Part Number Hot Search : 
SC227 BR256L PEB2086 2SD20 M69AR AM29DL FS00241 HMC128G8
Product Description
Full Text Search
 

To Download PSB4595 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ICs for Communications
Analog Line Interface Solution ALIS PSB 4595 Version 2.1 PSB 4596 Version 2.1
Data Sheet 06.98
DS 1
ALIS Revision History: Previous Version: Page Page (in previous (in new Version) Version)
Current Version: 06.98
Subjects (major changes since last revision)
Edition 06.98 This edition was realized using the software system FrameMaker(R). Published by Siemens AG, HL AT (c) Siemens AG 1998. All Rights Reserved. Attention please! As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies. The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list). Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group. Siemens AG is an approved CECC manufacturer. Packing Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems2 with the express written approval of the Semiconductor Group of Siemens AG. 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.
PSB 4595 / PSB 4596 Analog Line Interface Solution
Table of Contents 1 1.1 1.2 2 2.1 2.2 2.3 3 3.1 3.2 3.3 3.4 3.5 4 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.3.1 4.3.2 4.3.3 4.3.3.1 5 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.3 5.3.1 5.3.2 5.4 5.5 6 Page
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Pin Definition of ALIS-A PSB 4595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Pin Definition of ALIS-D PSB 4596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 ALIS with DSP-based Modem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 ALIS with Software Modem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Hybrid Modem (ISDN plus Analog) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Modem with Speakerphone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Analog Videophone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 ALIS Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 ALIS Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 ALIS AC Signal Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Receive Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Transmit Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Test Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 ALIS Ring and Caller ID Signal Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . .23 Caller ID (CID) Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Ring-Level Metering (RLM) Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Test Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Configuration Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Connection to the Telephone Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 The -Controller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 The Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Interface Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Demux Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Multiplex Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 External clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Crystal clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Capacitor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Caller ID Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Programming ALIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Semiconductor Group
3
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Table of Contents 6.1 6.1.1 6.2 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8 6.4 6.5 6.6 6.6.1 6.6.2 7 7.1 7.1.1 7.1.2 7.2 7.2.1 7.2.2 7.3 7.3.1 7.3.2 7.4 7.4.1 7.4.2 7.5 8 8.1 8.1.1 8.1.2 Page
Types of Commands and Data Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Storage of Programming Information: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 SOP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 CR0 Configuration Register 0 (Filters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 CR1 Configuration Register 1 (Dialing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 CR2 Configuration Register 2 (Caller ID) . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 CR3 Configuration Register 3 (Test Loops) . . . . . . . . . . . . . . . . . . . . . . . . . .42 CR4 Configuration Register 4 (Analog Gain) . . . . . . . . . . . . . . . . . . . . . . . . .43 CR5 Configuration Register 5 (Version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 XOP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 XR0 Extended Register 0 (Interrupt Register) . . . . . . . . . . . . . . . . . . . . . . . .44 XR1 Extended Register 1 (Interrupt Enable Register) . . . . . . . . . . . . . . . . . .46 XR2 Extended Register 2 (Cadence Time Out) . . . . . . . . . . . . . . . . . . . . . . .47 XR3 Extended Register 3 (DC Characteristic) . . . . . . . . . . . . . . . . . . . . . . . .47 XR4 Extended Register 4 (Cadence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 XR5 Extended Register 5 (Ring Timer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 XR6 Extended Register 6 (Power State) . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 XR7 Extended Register 7 (Vdd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 COP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 CAO Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 CR Registers: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 XR Registers: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 ALIS Command Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 SOP Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 SOP - Write Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 SOP - Read Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 XOP Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 XOP - Write Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 XOP - Read Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 COP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 COP - Write Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 COP - Read Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 CAO Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 CAO - Write Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 CAO - Read Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 Example of a Mixed Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 Nature and Sources of Interrupts: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 Interrupt Indication at Signal Change: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Interrupt Indication at Event: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
4 Data Sheet 06.98
Semiconductor Group
PSB 4595 / PSB 4596 Analog Line Interface Solution
Table of Contents 8.1.3 9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.8.1 9.8.2 9.8.3 9.8.4 9.8.5 9.8.6 9.8.7 9.8.8 9.8.9 9.8.10 9.8.11 10 10.1 10.2 10.2.1 10.3 10.3.1 10.3.2 10.3.3 10.4 10.5 10.5.1 10.5.2 10.5.3 11 11.1 11.2 11.2.1 11.2.2 11.2.3 11.3 Page
Interrupt Indication at High Level: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Reset (Basic Settings Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Deep Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Ringing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Conversation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Pulse Dialing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Operating Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 Flow of Ring Sequence and Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 Successful Ring Sequence, Auto Ring Enabled, no Caller ID . . . . . . . . . . . .67 Successful Ring Sequence, Auto Ring Enabled, Caller ID . . . . . . . . . . . . . .68 Unsuccessful Ring Sequence, Auto Ring Enabled, no Caller ID . . . . . . . . . .69 Unsuccessful Ring Sequence, Auto Ring Enabled, Caller ID . . . . . . . . . . . .70 Successful Ring Sequence, Auto Ring Disabled, No Caller ID . . . . . . . . . . .71 Successful Ring Sequence, Auto Ring Disabled, Caller ID . . . . . . . . . . . . . .72 Unsuccessful Ring Sequence, Auto Ring Disabled, no Caller ID . . . . . . . . .73 Unsuccessful Ring Sequence, Auto Ring Disabled, Caller ID . . . . . . . . . . . .74 Unsuccessful Ring Sequence, Auto Ring Enabled . . . . . . . . . . . . . . . . . . . .75 Unsuccessful Ring Sequence, Auto Ring Disabled . . . . . . . . . . . . . . . . . . . .76 Start from Deep Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 Modem Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Pulse Dialing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 DTMF Dialing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Programming the ALIS DTMF Tone Generators . . . . . . . . . . . . . . . . . . . . . .78 Caller ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Characteristics for Caller ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Storage and Reading of Caller ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 Programming the ALIS Caller ID Coefficients . . . . . . . . . . . . . . . . . . . . . . . .81 Billing Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Ring Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Programming the ALIS Ring Detect Coefficients . . . . . . . . . . . . . . . . . . . . . .82 Ring Threshold in Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 Programmable Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 DC Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 Programming Ranges for DC Termination . . . . . . . . . . . . . . . . . . . . . . . . . . .84 Input Current in Puls Dialing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 AC Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
5 Data Sheet 06.98
Semiconductor Group
PSB 4595 / PSB 4596 Analog Line Interface Solution
Table of Contents 11.3.1 11.4 11.4.1 11.5 Page
Ringer Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 ALIS Caller ID Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 Ring Detect Levels and Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 ALIS Cap Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
12 Electrical Performance Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 12.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 12.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 12.3 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 12.3.1 ALIS-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 12.3.2 ALIS-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 12.4 AC Transmission Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 12.4.1 Absolute Gain Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 12.4.2 Gain Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 12.4.3 Harmonic Distortion plus Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 12.4.4 Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 12.4.5 Return Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 12.4.6 Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 12.4.6.1 Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 12.4.6.2 Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 12.4.7 Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 12.4.7.1 Group Delay Absolute Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 12.4.7.2 Group Delay Distortion Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 12.4.7.3 Group Delay Distortion Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 12.4.8 Out-of-Band Signals at TIP/RING Receive . . . . . . . . . . . . . . . . . . . . . . . . . .98 12.4.9 Out-of-Band Signals at TIP/RING Transmit . . . . . . . . . . . . . . . . . . . . . . . . . .99 12.4.10 Trans-hybrid Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 12.5 AC Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 12.5.1 Input/ Output Waveform for AC Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 12.5.2 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 12.5.3 Control Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 12.5.4 Data Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 12.5.5 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
Semiconductor Group
6
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Overview 1 Overview
The PSB 4595 and PSB 4596 two-chip solution forms the complete front end of a modem or fax machine. This Analog Line Interface Solution (ALIS) consists of a DAA, a codec and a hybrid circuit, and bridges the gap between the phone line and the data pump. The analog PSB 4595 is manufactured in low-power BiCMOS technology and the digital PSB 4596 in CMOS technology. The ALIS concept is a fully programmable modem front end which allows a single design for the worldwide market: * Adaptation to specific countries and applications is achieved by downloading appropriate coefficient sets. * Isolation is achieved by a digital capacitor interface, without a transformer; making the ALIS particularly suitable for designing PCMCIA modems. * Thanks to an advanced digital-filter concept in combination with the programmable electronic DAA, ALIS provides both excellent transmission performance and high adaptability. This second-generation digital filter concept also allows maximum autonomy between the various filter blocks. This performance makes ALIS suitable for V.34+ and V.90 modem applications. A minimum number of external components is required to complete the functional range of ALIS. Its internal precision is based on a very accurate band-gap reference. The frequency behavior is determined largely by digital filters which exhibit no fluctuations. As a result of the ADC and DAC concepts, its linearity is limited only by second-order parasitic effects. The ALIS chip set can be easily adapted and connected to various modem data pumps or to host-based modem solutions. The flexible digital interface of ALIS allows easy programming via the modem data pump or a controller. Siemens offers a range of reference and evaluation tools for the ALIS chip set. For appropriate tools, please contact your nearest Siemens representative.
Semiconductor Group
7
Data Sheet 06.98
Analog Line Interface Solution ALIS
PSB 4595 PSB 4596
CMOS 1.1 Features
* ALIS substitutes data access arrangement (DAA), codec and hybrid * Ring detection: level, frequency and cadence * Caller ID: detection, decoding and storage * Programmable to different country requirements * Programmable DC characteristics * ALIS supports V.34+ and V.90 * ALIS complies with ETS 300 001 and FCC requirements * Isolation by digital capacitor interface * Analog part powered from the tip/ring line by an integrated voltage regulator * High performance analog-to-digital and digital-toanalog conversion * DSP-based solution for adapting the transmission behavior, especially for - AC impedance matching - trans-hybrid balancing - frequency response - gain * Advanced test capabilities: - digital loops - analog loops
P-TSSOP24
P-SSOP28
* High-pass filter in receive path to suppress line interference (50/60 Hz) * Isolated control pins for general purpose use * Advanced low-power 0.8m analog BICMOS technology for ALIS analog and 0.8m CMOS technology for ALIS digital * Two-chip solution: the P-TSSOP24 and P-SSOP28 packages are PCMCIA-compliant
Type PSB 4595 V2.1 PSB 4596 V2.1
Semiconductor Group
Ordering Code
Package P-TSSOP24 P-SSOP28
8
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
1.2
Logic Symbol
Isolation MCLK RESET Vdd Vss
Data Interface
C Interface
ALIS-D
SO
Cap Interface
ALIS _A ALIS-A
SO
SI
Caller ID Interface TIP/RING
Figure 1 Logic Symbol of the ALIS Chipset
Semiconductor Group
9
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Pin Definition and Functions 2 2.1 Pin Definition and Functions Pin Configuration
CAP1 CAP2 VREF TIP TIP_AC RING RING_AC SO_0 SO_1Q CAP_B22 CAP_B21 CAP_A22
1 2 3 4 5 6 7 8 9 10 11 12
24 23 22 21 20 19 18 17 16 15 14 13
GNDA T1G VDDA VDD_SENS NC T2G SI_0 SI_1 TEST CAP_C21 CAP_C22 CAP_A21
Figure 2 Pin Configuration of ALIS-A (Top View)
CAP_A12 CAP_B11 CAP_B12 ID_Ain Afeedback ID_Bin Bfeedback VDD GND CS DCLK DIN DOUT INT
1 2 3 4 5 6 7 8 9 10 11 12 13 14
28 27 26 25 24 23 22 21 20 19 18 17 16 15
CAP_A11 CAP_C12 CAP_C11 VDDA GNDA RESET SO MCLK1 MCLK2 MODE DAT_CLK DAT_IN/SEL DAT_OUT FSC
Figure 3 Pin Configuration of ALIS-D (Top View)
Semiconductor Group
10
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Pin Definition and Functions 2.2 Pin No. 22 24 4 5 6 7 23 19 21 3 Pin Definition of ALIS-A PSB 4595 Symbol VDDA GNDA TIP TIP_AC RING RING_AC T1G T2G VDD_SENS VREF Function Power Power I I I I O O I I/O Descriptions Programmable supply for the circuitry Analog ground: All signals are referred to this pin TIP AC+DC sense input TIP AC sense input RING AC+DC sense input RING AC sense input Gate for external transistor T1 (AC/DC control) Gate for external transistor T2 (VDDA control) VDDA sense input Reference voltage: Must be connected to GNDA via an external capacitor of more than 10 nF (typ. 15 nF) Pin for external capacitor of more than 1 F for DC filtering to pin Cap2 See Cap1 Auxiliary input pin 0 Auxiliary input pin 1 Auxiliary output pin 0 Auxiliary output pin 1 Must be connected permanently to GNDA Must be connected via a capacitor of more than 5pF to CAP_A11. Must be connected via a capacitor of more than 5pF to CAP_A12. Must be connected via a capacitor of more than 5pF to CAP_B11. Must be connected via a capacitor of more than 5pF to CAP_B12.
1 2 18 17 8 9 16 13 12 11 10
CAP1 CAP2 SI_0 SI_1 SO_0 SO_1Q TEST CAP_A21 CAP_A22 CAP_B21 CAP_B22
I/O I/O I I O O I I I O O
Semiconductor Group
11
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Pin Definition and Functions Pin No. 15 14 Symbol CAP_C21 CAP_C22 Function I I Descriptions Must be connected via a capacitor of more than 5pF to CAP_C11. Must be connected via a capacitor of more than 5pF to CAP_C12.
Table 1: ALIS-A Pin Definition
Semiconductor Group
12
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Pin Definition and Functions 2.3 Pin No. 8 9 25 24 21 Pin Definition of ALIS-D PSB 4596 Symbol VDD GND VDDA GNDA MCLK1 Function Power Power Power Power I Description +5 Volt supply for the digital circuitry Ground digital: All signals are referred to this pin +5 Volt supply for the analog circuitry Ground analog: All analog signals are referred to this pin Master clock1: One pin of a crystal or ceramic resonator is connected. This pin can also be driven from an external clocking source of 16.384 MHz, synchronous to FSC (MCLK=FSC*2048) Master clock2: The other pin of a crystal or ceramic resonator is connected. When MCLK1 is driven by an external clock, this pin should be left open Reset input: Forces the device to default mode (low active) As input: Frame synchronisation clock, 8kHz, identifies the beginning of the frame. FSC must be synchronous to MCLK (MCLK=FSC*2048) As Output: Indicates the beginning of a new frame Data interface: Receive data from the DSP. The data is received in 16-bit bursts every 125 ms. Interface selection pin in MUX mode. Data interface: Transmit data to the DSP. The data is transmitted in 16-bit bursts every 125 ms Data clock 128 to 1024 kHz: Determines the rate at which data is shifted into or out of the data interface -controller interface: Chip select enable to read or write data. Active low
20
MCLK2
O
23 15
RESET FSC
I BI
17
DAT_IN / SEL
I
16
DAT_OUT
O
18
DAT_CLK
I
10
CS
I
Semiconductor Group
13
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Pin Definition and Functions Pin No. 11 12 13 14 19 4 6 5 7 28 1 2 3 26 27 22 Symbol DCLK DIN DOUT INT MODE ID_Ain ID_Bin A feedback B feedback CAP_A11 CAP_A12 CAP_B11 CAP_B12 CAP_C11 CAP_C12 SO Function I I TRI O I I I O O O O I I O O O Description -controller interface: Clock. Maximum clock rate 1024 kHz -controller interface: Input data -controller interface: DOUT is high 'Z' if no data is transmitted -controller interface: Interrupt output pin Interface mode pin (parallel or MUX mode) Input for caller ID comparator (connection to TIP) Input for caller ID comparator (connection to RING) Feedback for caller ID comparator Feedback for caller ID comparator Must be connected via a capacitor of more than 5pF to CAP_A21. Must be connected via a capacitor of more than 5pF to CAP_A22. Must be connected via a capacitor of more than 5pF to CAP_B21. Must be connected via a capacitor of more than 5pF to CAP_B22. Must be connected via a capacitor of more than 5pF to CAP_C21. Must be connected via a capacitor of more than 5pF to CAP_C22. Auxiliary output pin
Table 2: ALIS-D Pin Definition
Semiconductor Group
14
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
System Integration 3 System Integration
ALIS can be used in different modem applications to connect the data pump to the TIP/ RING wire. 3.1 ALIS with DSP-based Modem
For a modem data pump, the ALIS provides the front-end to the tip/ring.
Data Pump V.34 V.90
ALIS-D
SI
ALIS-A
Tip/Ring
PSB 4596
PSB 4595
Note: SI: Serial Interface
Figure 4 DSP-based Modem Application Isolation is provided by a capacitor interface, without transformer. This allows very flat frequency response over the entire voice band, even at low frequencies. In V.90 Modem applications, the 50/60 Hz high-pass filter can be turned off.
Semiconductor Group
15
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
System Integration 3.2 ALIS with Software Modem
ALIS also supports software modems where V.34 runs on the host computer (e.g. in combination with a USB controller).
ALIS-D PSB 4596
SI
ALIS-A PSB 4595
Tip/Ring
Microcontroller with USB or PCI Interface
USB or PCI
Figure 5 Software Modem Application
Semiconductor Group
16
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
System Integration 3.3 Hybrid Modem (ISDN plus Analog)
In combination with the SIEMENS ISDN chip set, ALIS supports hybrid modems, , allowing connection to either the TIP/RING line or to an S or U-interface for ISDN applications.
ALIS-D PSB 4596 Flash SRAM
SI
ALIS-A
Tip/Ring
PSB 4595
ISAR34
IOM-2 Interface
ISAC-S TE
S-Interface *
PSB 7115
PSB 2186 *
Microcontroller with USB or V.24 Interface
USB or V.24
Figure 6 Hybrid Modem Application, with S-interface: ISAR34 Enhanced Data Access Controller (PSB 7115) and ISDN Access Controller for S-Bus ISAC-S TE (PSB 2186) * Figure 4 shows a hybrid modem with the ISDN S-interface. To meet the ISDN Uinterface, the ISAC-S TE PSB 2186 is replaced by the IEC-Q TE PSB 21911.
Semiconductor Group
17
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
System Integration 3.4 Modem with Speakerphone
ALIS-D PSB 4596 Flash SRAM
SI
ALIS-A
TIP/RING
PSB 4595
ISAR34
IOM-2 Interface
ARCOFI-SP PSB 2163
PSB 7115
Microcontroller with USB or V.24 Interface
USB or V.24
Figure 7 Application with Speakerphone: ARCOFI-SP Audio Ringing Codec (PSB 2160, PSB 2163, PSB 2165, PSB 2168) and ISAR34 Enhanced Data Access Controller (PSB 7115)
Semiconductor Group
18
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
System Integration 3.5 Analog Videophone
The diagram below shows a system solution for an analog videophone application using a SIEMENS chip set.
ALIS-D PSB 4596 Flash SRAM
SI
ALIS-A
Tip/Ring
PSB 4595
ISAR34 PSB 7115
IOM-2 Interface
ARCOFI-SP PSB 2163
JADE AN PSB 7230
VIDEO CODEC
Microcontroller with USB or V.24 Interface
USB or V.24
Figure 8 ARCOFI-(SP) Audio Ringing Codec (PSB 2160, PSB 2163, PSB 2165, PSB 2168) ; ISAR34 Enhanced Data Access Controller (PSB 7115); JADE Joint Audio Decoder Encoder (PSB 7230, PSB 7238)
Semiconductor Group
19
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
ALIS Implementation 4 ALIS Implementation
The ALIS chip set replaces all the major parts of a conventional front end for modem solutions. The circuit consists of two major parts, a DSP-based codec and an electronic DAA. Advanced features such as ring detection, pulse dialing and caller ID are integrated on-chip. Additional operating modes such as sleep mode or ringing mode are implemented to minimize power consumption. 4.1 ALIS Block Diagram
The tip/ring telephone line interface is connected mainly with the ALIS-A. It is also connected with the ALIS-D for Caller ID functions..
Control Data Isolation
Control Interface
I/O
Control
Cap. Interface DSP HWFilter A/D
Vdd Control
Hybrid and Filters Data Interface ALIS-D D/A Caller ID ALIS-A
TIP/RING
Transmit/Receive Data
Figure 9 ALIS Block Diagram The analog front end (ALIS-A) is connected to the line via TIP/RING. The programmable supply voltage for ALIS-A is generated from the line by the Vdd control. Two/four wire conversion is implemented in the hybrid circuit. Analog anti-aliasing pre-filters (PREFI) and smoothing post-filters (POFI) are included for signal conditioning. High-performance over-sampling analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) assure the required conversion accuracy. The ADCs and DACs are connected to the digital signal processor (DSP) on the digital part (ALIS-D) via a dedicated capacitor interface which also provides the required isolation to the line. Special hardware filters perform filtering functions such as interpolation and decimation. The DSP handles all the necessary algorithms. These include bandpass filtering, sample rate conversion, ringing detection, and caller ID decoding. All programmable filters and functions are also controlled and processed by the DSP. The control interface allows external control of the ALIS features and provides transparent access to ALIS commands and signaling pins. Thus pre-calculated sets of coefficients can be downloaded from the system to the onSemiconductor Group 20 Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
ALIS Implementation chip coefficient RAM (CRAM) in order to program the filters. Transmit and receive data is transferred to and from the data pump via the data interface. 4.2 ALIS AC Signal Flow Graph
ALIS architecture is based on digital filters. The data path through these filters is shown in the next few diagrams. The filter concept also allows maximum autonomy between the different filter blocks. Each filter block has a one-to-one correspondence with a specific network element. Marked filters (grey) can be programmed by the user.
digital out
AR1 FRR RFIX1 AR2 RFIX2 ADC
ADC
DAA
Tip/ Ring
THFIX IMFIX
TH
IM
AX1
FRX
XFIX1
AX2
XFIX2
DAC
digital in
Legend: DAA AR1 FRR RFIX1 AR2 RFIX2 ADC THFIX TH user-programmable block fixed filter block fixed functional block IMFIX IM AX1 Data Access Arrangement, Fixed Part Amplification Receive Filter 1 Equalization Receive Receive Filter Fixed Part 1 Amplification Receive Filter 2 Receive Filter Fixed Part 2 Analog-to-Digital Converter Transhybrid Filter Fixed Part Transhybrid Filter Impedance Filter Fixed Part Impedance Filter Amplification Transmit Filter 1 Equalization Transmit Transmit Filter Fixed Part 1 Amplification Transmit Filter 2 Transmit Filter Fixed Part 2 Digital-to-Analog Converter
Definition: Transmit:Digital-to-Analog Receive :Analog-to-Digital
FRX XFIX1 AX2 XFIX2 DAC
Figure 10 AC Signal Flow Graph
Semiconductor Group
21
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
ALIS Implementation 4.2.1 Receive Path
After passing the DAA and a simple anti-aliasing pre-filter with an analog gain stage, the voice signal is converted to a 1-bit digital data stream in the sigma-delta converter. The first down-sampling steps are performed in fast digital hardware filters. Subsequent processing is implemented in the digital structure which allows easy and flexible programming of parameters. Finally, the fully processed signal is transferred to the data interface. Subsequent processing is done by microcode in the digital filter structure to allow adaptability. Gain adjustment is provided in two stages, AR1 and AR2. The total gain adjustment is programmable in two ranges: from 14 to 24 dB, in steps of 0.5 dB; and from -3 to 14 dB, with steps between 0.02 and 0.05 dB. Located inbetween is a decimation stage to reduce the sampling rate to the 8 kHz PCM rate, and a low-pass filter to band-limit the signal in accordance with ITU-T G.714 and ETSI (NET33) recommendations (in RFIX1); also an equalization stage (in FRR). Finally, the signal is passed out to the Serial Data Interface (SDI). ALIS meets or exceeds all ITU and ETSI (NET33) recommendations on attenuation distortion and group delay. 4.2.2 Transmit Path
The digital input signal is received via the data interface. Low-pass filtering, gain correction and frequency-response correction are implemented in the digital filter structure. The up-sampling interpolation is then performed by fast hardware structures to reduce the DSP load. The up-sampled 1-bit data stream is converted to an analog equivalent which is smoothed by a post-filter (POFI) and converted to a 2-wire signal in the DAA. There are also two independent tone generators which can insert tones into the Transmit path. They have adjustable frequencies, default 2 kHz, and a programmable bandpassfilter to adapt the output for DTMF. When either tone generator is on, the data signal transmission is suppressed. 4.2.3 Loops
ALIS implementation includes two loops. One is used to generate the AC-termination impedance (IM) and the other is used to perform proper hybrid balancing (TH). A simple additional path IM (from the receive to the transmit path) supports the impedancematching function. 4.2.4 Test Features
Several analog and digital test loops are implemented in ALIS. The receive and transmit paths may be short-circuited at two different points for test purposes.
Semiconductor Group
22
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
ALIS Implementation 4.3 ALIS Ring and Caller ID Signal Flow Graph
CID out
CIDL CIDH CIDBP
Tip/Ring
RLM ADC
RIM FIX
RIM
DAC
Legend: CIDL CIDH Caller ID Lowpass Caller ID Hilbert Transformer
CIDBP Caller ID Bandpass RLM ADC Ring Level Metering Analog-to-Digital Converter
RIMFIX Ringer Impedace Filter Fixed Part comparator for CID user-programmable block RIM fixed filter block fixed functional block DAC Ringer Impedace Filter Digital-to-Analog Converter
Figure 11 Ring Signal Flow Graph These data paths operate only when the ALIS is in Ringing state. 4.3.1 Caller ID (CID) Path
The Caller ID receiver meets Bellcore specifications TR-NWT-000030 and SR-TSV-002476 for Caller ID. In this service, the calling party's information (Calling Line Identification Presentation (CLIP)) is transmitted in the silent interval between the first and second ring. ALIS receives and stores up to 4096 bits of the 1200 baud FSK (Frequency Shift Keying) signal. The decoding scheme meets the Bell 202 and ITU-T V.23 specifications. The FSK signal which contains the caller information is converted to a 1-bit data stream by a comparator in order to minimize power consumption. Down-sampling steps are performed in fast digital hardware filters. To decode the caller ID, bandpass filtering, Hilbert transformation and other functions are implemented. The output CID-out is sampled at 1200 baud, and stored in the CID-RAM.
Semiconductor Group
23
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
ALIS Implementation 4.3.2 Ring-Level Metering (RLM) Path
The analog signal is converted to a 1-bit data stream in the ADC. After decimation in hardware filters, the remaining processing is done in the digital filter structure (in RLM): bandpass filtering to select the ringing frequency, and integration to determine if the amount of energy in-band has exceeded the threshold for a valid ring signal. The bandpass parameters and threshold are programmable. Ringing is detected in this path. The digital input is bandpass filtered, integrated and compared to a threshold to determine if a ringing signal has occurred. The threshold and bandpass filters are programmable. The result of this operation can be monitored by reading the RMR bit (see "CR1 Configuration Register 1 (Dialing)" on page 40). 4.3.3 Loops
A loop is available to generate the Ring-termination impedance (RIM). 4.3.3.1 Test Features There are three loopbacks on ALIS-D to test interfaces: - Host interface: loopback from the PCM interface (just inside ALIS-D) - Caller ID interface: loopback from Caller ID input to capacitor interface - Capacitor interface: loopback through different parts of the capacitor interface There are two loopbacks on ALIS-A: - Tip/ring interface: loopback from the tip/ring, before the ADC - Codec: loopback from the tip/ring, after the codec
Semiconductor Group
24
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Configuration Overview 5 5.1 Configuration Overview Connection to the Telephone Line
VDDA
SENS VDD
T2 T2G
TIP
TIP-AC TIP
T1
T1G
RING
RING-AC RING
VREF GNDA
CAP1 CAP2
Figure 12 Connection of ALIS-A to the Telephone Line As shown in the figure, ALIS-A requires a minimum of components to complete the DAA: - Protection circuit: not shown. - Bridge: using Schottky diodes will improve the performance at low feeding conditions. Recommended: Dual Schottky diode SIEMENS BAT 240A. - Resistors for current sensing. - Capacitors for AC coupling and VDD buffering.
Semiconductor Group
25
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Configuration Overview - Two transistors (T1, T2) to handle the line current. T2 must be of depletion type, in order to deal with start-up. Recommended transistors: T1: SIEMENS BSP 88; T2: SIEMENS BSP 129. - Components for EMC protection: not shown, as they depend on the board layout. ALIS-D can optionally be connected to the tip/ring to provide Caller ID functions. The CID circuit requires two capacitors and four resistors. 5.2 Host Interface
The host interface consists of a serial -controller interface and a 16-bit linear data interface. They are used to connect ALIS either to a -controller and or to a data pump. The two serial interfaces can be accessed on two separate serial ports or in timemultiplex (MUX) mode on a single serial port. 5.2.1 The -Controller Interface
The ALIS internal configuration registers, the auxiliary ports, and the Coefficient RAM (CRAM) are programmable via the serial -controller interface. This interface consists of four pins: CS: DCLK: DIN: DOUT: Chip select, to enable interface (active low) Clock, 1 kHz to 1024 kHz Data input Data output
CS is used to start serial access to the ALIS registers and the Coefficient RAM. Following a CS falling edge, the first eight bits received at DIN specify the command. Subsequent data bytes (the number depends on the command) are stored in the selected configuration registers or the selected part of the CRAM. Serial interface specification: 8 bit, no parity, no start/stop bit. Every command must begin with a CS falling edge.
Semiconductor Group
26
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Configuration Overview
CS
DCLK
DIN
765432107654321076543210
Control
Data Byte 1 High 'Z'
Data Byte 2
DOUT
Figure 13 Example of a Write Access, two Data Bytes transferred If the first eight bits received via DIN specify a read command, ALIS will start to respond via DOUT with its specific identification byte. The number of specified data bytes within the command (contents of configuration registers or contents of the CRAM) will follow on DOUT.
CS
DCLK
DIN
76543210
Control High 'Z'
DOUT
7654321076543210
Identification
Data Byte 1
Figure 14 Example of a Read Access, one Data Byte transferred via DOUT
Semiconductor Group 27 Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Configuration Overview The data transfer is synchronized by DCLK. DIN is latched at the falling edge of DCLK, while DOUT changes with the rising edge of DCLK. During the execution of a command which is followed by output data (read command), the device will not accept any new command via DIN. The data transfer sequence can be interrupted by setting CS to '1'. To reduce the number of connections to the -processor, DIN and DOUT may be strapped together to form a bi-directional data pin. 5.2.2 The Data Interface
A serial data interface is used for transferring voice data. The interface consists of five pins: DAT_CLK: FSC: DAT_IN: DAT_OUT: Clock, 128 kHz to 1024 kHz Frame synchronization clock, 8 kHz Transmit data input Receive data output
The Frame Sync (FSC) pulse identifies the beginning of a receive and a transmit frame. DAT_CLK synchronizes the data transfer on DAT_IN and DAT_OUT. The data bytes are first serialized to 16-bit width and MSB. The rising edge indicates the start of the bit, while the falling edge is used to latch the contents of the received data. 125 S
FSC
DAT_CLK
DAT_IN
0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2
DAT_OUT 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2
16 Bit Voicedata MSB first Figure 15 Example of a Clock Rate of 128 kb/s
Semiconductor Group
28
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Configuration Overview
125 S
FSC
DAT_CLK
DAT_IN
151413121110 9 8 7 6 5 4 3 2 1 0
DAT_OUT
tStart
151413121110 9 8 7 6 5 4 3 2 1 0
tVoice
tStop
Figure 16 Example of a Clock Rate higher than 128 kb/s The data package must stay within the frame, tStart > 0 and tStop > 0. The FSC signal can be generated externally by the host or by ALIS.
Semiconductor Group
29
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Configuration Overview 5.2.3 Interface Modes
5.2.3.1 Demux Mode Connection of the MODE pin to GND allows the C and the data interface to be accessed via two serial ports.
DSP (Data Pump) ALIS-D
DCLK CS DIN DOUT INT C Interface
DAT_CLK FSC DAT_IN DAT_OUT
Data Interface
MODE
Figure 17 Host Interface in Demux Mode, FSC as Input
DSP (Data Pump)
ALIS-D
DCLK CS DIN DOUT INT C Interface
DAT_CLK FSC DAT_IN DAT_OUT
Data Interface
MODE
Figure 18 Host Interface in Demux Mode, FSC as Output
Semiconductor Group 30 Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Configuration Overview 5.2.3.2 Multiplex Mode Connection of the MODE pin to VDD allows the two interfaces to be time-multiplexed on a single port. The interfaces are selected by the DAT_IN/SEL pin.
DSP (Data Pump)
ALIS-D
DCLK / DAT_CLK CS / FSC DIN / DAT_IN DOUT / DAT_OUT INT C Interface
DAT_IN / SEL VDD
Data Interface
MODE
Figure 19 Host Interface in MUX Mode, FSC as Input
DAT_IN / SEL = 0 PIN No 11 10 12 13 Function DCLK CS DIN DOUT
DAT_IN / SEL = 1 PIN No 11 10 12 13 Function DAT_CLK FSC DAT_IN DAT_OUT
Table 3: Pin Definition in MUX mode, FSC as Input
Semiconductor Group
31
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Configuration Overview
DSP (Data Pump)
ALIS-D
DCLK / DAT_CLK CS DIN / DAT_IN DOUT / DAT_OUT INT C Interface
FSC DAT_IN / SEL VDD
Data Interface
MODE
Figure 20 Host Interface in MUX mode, FSC as Output
DAT_IN / SEL = 0 PIN No 11 10 12 13 15 Function DCLK CS DIN DOUT FSC (output) 11 10 12 13 15
DAT_IN / SEL = 1 PIN No Function DAT_CLK VDD / GND1) DAT_IN DAT_OUT FSC (output)
1) must be connected to a fixed potential
Table 4: Pin Definition in MUX Mode, FSC as Output
Semiconductor Group
32
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Configuration Overview
M U X -M o d e , F S C e x te rn
FSC D C L K = D C L K /D A T _ C L K C S = C S /F S C
C lo c k in C lo c k in
C o n tro l
D a ta
D IN = D IN /D A T _ IN D O U T = D O U T /D A T _ O U T D A T _ IN = S E L
E
D
O
C lo c k o u t
C lo c k o u t
M
C
r is in g e d g e c s w ith s e l= 1 is fs c s ta r t
125 us FRAM E
M U X - M o d e , F S C in te r n
FSC D C L K = D C L K /D A T _ C L K CS =CS
C lo c k in C lo c k in
C o n tro l
D a ta
PC
C lo c k o u t C lo c k o u t
U
M
125 us FRAM E
M
33
D IN = D IN /D A T _ IN D O U T = D O U T /D A T _ O U T D A T _ IN = S E L
Figure 21 Protocol for Transmission of C- and PCM Data in MUX Mode 5.3 Clocking
ALIS operates with a typical master clock frequency of 16.384 MHz. This clock can either be supplied from an external source or generated with a crystal by ALIS-D. It is essential that the ratio of the master clock frequency to the FSC frequency is exactly 2048. This is of course guaranteed if the FSC signal is generated internally. 5.3.1 External clock
When providing the master clock externally, an external clock signal must be connected to pin MCLK1. The MCLK2 pin must remain unconnected and the CLK_EXT bit in CR0 must be programmed to a logic '1'. (see the section "CR0 Configuration Register 0 (Filters)" on page 39).
Semiconductor Group
PC
M
M
O
D
E
Data Sheet 06.98
O
D
E
PSB 4595 / PSB 4596 Analog Line Interface Solution
Configuration Overview 5.3.2 Crystal clock
Because ALIS includes an on-chip oscillator circuit, an external crystal may be used. This crystal is connected across the MCLK1 and MCLK2 pins with two capacitors (see Figure 22 "External Crystal Connections" ) . The CLK_EXT bit in CR0 must be programmed to a logic '0' (= default value after reset). The capacitor values depend on the crystal type and are specified by the crystal manufacturer. A microprocessor-grade crystal with a parallel-resonant fundamental frequency is recommended. To ensure that the ratio between the master clock and the FSC signal is correct, ALIS can be programmed to internal FSC generation (set Fsc_en bit in CR4 to a logic '1'). See Figure 18 "Host Interface in Demux Mode, FSC as Output" on page 30 and Figure 20 "Host Interface in MUX mode, FSC as Output" on page 32.
XTAL 16.384 MHz
Cxtl
Cxtl
MCLK1
MCLK2
ALIS-D
Figure 22 External Crystal Connections
Semiconductor Group
34
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Configuration Overview 5.4 Capacitor Interface
A capacitor interface is used to decouple ALIS-A from ALIS-D. It is a bi-directional serial interface and is used for exchanging control and data information between ALIS-A and ALIS-D. The transmission format is digital to avoid distortion and for performance reasons. For the size and tolerance of the capacitors, see the section "ALIS Cap Interface" on page 86.
CAP_A11 CAP_A12
CAP_A1 CAP_A2
CAP_A21 CAP_A22
CAP_B11 CAP_B12
CAP_B1 CAP_B2
CAP_B21 CAP_B22
CAP_C11 CAP_C12
CAP_C1 CAP_C2
CAP_C21 CAP_C22
ALIS-D
ALIS-A
Figure 23 Connection of Capacitor Interface between ALIS-A and ALIS-D
Semiconductor Group
35
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Configuration Overview 5.5 Caller ID Interface
To receive the caller ID, ALIS-D must be connected to the line via an RC network. See the section "ALIS Caller ID Interface" on page 86".
Afeedback
Rfb1 Rin1 Cin1 TIP
ID_Ain
RING ID_Bin Rin2 Rfb2 Bfeedback Cin2
ALIS-D
Figure 24 Caller ID Interface Connection of ALIS-D to Tip/Ring
Semiconductor Group
36
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Programming ALIS 6 Programming ALIS
Appropriate commands via the serial -controller interface enable very flexible programming and verification of ALIS. Four different commands are used to access the various control registers and RAMs: SOP (see page 38), XOP (see page 44), COP (see page 50) and CAO (see page 51). The first byte received via DIN selects the command type. Each command can be used as a write or read command. Thanks to the extended ALIS control facilities, the SOP, XOP and COP commands contain additional information for programming (writing) and verifying (reading) the ALIS status (e.g. number of subsequent bytes, software reset, operating mode). Up to 8 bytes of data can be read or written with an SOP, XOP or COP command. The CAO command allows all 512 bytes of the caller ID RAM to be read or written. Any read command causes ALIS to respond with its specific identification byte before sending the requested information. 6.1 Types of Commands and Data Bytes
The ALIS commands are selected by bit 3, 4 and 6 of the command byte as shown below. SOP command Bit 7 PU 1 XOP command Bit 7 RST COP command Bit 7 0 6 0 5 RW 4 0 3 CODE 3 2 CODE 2 1 CODE 1 0 CODE 0 6 0 5 RW 4 1 3 1 2 LSEL2 1 LSEL1 0 LSEL0 6 PU 0 5 RW 4 1 3 0 2 LSEL2 1 LSEL1 0 LSEL0
CAO command Bit 7 0 6 1 5 RW 4 1 3 1 2 0 1 0 0 0
Semiconductor Group
37
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Programming ALIS 6.1.1 * * * * Storage of Programming Information: CR0, CR1, etc. CR5 accessed by SOP commands XR0, XR1, etc. XR7 accessed by XOP commands CRAM accessed by COP commands RAM accessed by CAO commands
6 Configuration registers: 8 Extended registers: 1 Coefficient RAM: 1 Caller ID RAM: SOP Command
6.2
The SOP (status operation) command allows the ALIS status registers to be written or read via the -controller interface. Bit 7 PU 1 6 PU 0 5 RW 4 1 3 0 2 LSEL2 1 LSEL1 0 LSEL0
PU Power-up operation command (only with SOP write command) PU = 0 0: PU = 0 1: PU = 1 0: PU = 1 1: RW = 0: RW = 1: ALIS is set to sleep mode ALIS is set to ringing mode ALIS is set to conversation mode ALIS is set to pulse dialing mode Write to ALIS Read from ALIS
RW Read/Write: Enables reading from ALIS or writing information to ALIS
LSEL Length select information (see also programming procedure) This field identifies the number of subsequent data bytes LSEL = 000:1 byte of data follows (CR0) LSEL = 001:2 bytes of data follow (CR1, CR0) LSEL = 010:3 bytes of data follow (CR2. CR1, CR0) LSEL = 011:4 bytes of data follow (CR3, CR2. CR1, CR0) LSEL = 100:5 bytes of data follow (CR4, CR3, CR2, CR1, CR0) LSEL = 101:6 bytes of data follow (CR5, ...., CR1, CR0) Note: If only one configuration register requires modification, for example CR3, this can be accomplished by setting LSEL=011 and releasing pin CS after CR3 is written, to.
Semiconductor Group
38
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Programming ALIS 6.2.1 CR0 Configuration Register 0 (Filters)
Default value: 00H Configuration register CR0 defines the basic ALIS settings, which are: enabling/ disabling the programmable digital filters and tone generators. Bit 7 TH 6 IM 5 FRX 4 FRR 3 AX 2 AR 1 RIP 0 CLK_ EXT
TH Enable Trans-Hybrid Balancing (TH)-Filter TH = 0: TH = 1: IM IM = 0: IM = 1: FRX = 0: FRX = 1: FRR = 0: FRR = 1: AX = 0: AX = 1: AR = 0: AR = 1: RIP = 0: RIP = 1: CLK_EXT TH-filter disabled TH-filter enabled IM-filter disabled IM-filter enabled FRX-filter disabled FRX-filter enabled FRR-filter disabled FRR-filter enabled AX-filter disabled AX-filter enabled AR-filter disabled AR-filter enabled RIP-filter disabled RIP-filter enabled External clock signal
Enable Impedance Matching (IM)-Filter
FRX Enable Frequency Response Transmit (FRX)-Filter
FRR Enable Frequency Response Receive (FRR)-Filter
AX Enable Amplification/Attenuation Transmit (AX)-Filter
AR Enable Amplification/Attenuation Receive (AR)-Filter
RIP Enable Ringer Impedance (RIP)-Filter
CLK_EXT = 0: Crystal Oscillator is enabled, clock will be generated by crystal CLK_EXT = 1: Crystal Oscillator is disabled, clock must be supplied by external source
Semiconductor Group
39
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Programming ALIS 6.2.2 CR1 Configuration Register 1 (Dialing)
Default value: 00H Configuration register CR01 selects tone generator modes and other operating modes Bit 7 E_ Tone2 6 E_ Tone1 5 P_ Tone2 4 P_ Tone1 3 Pulse 2 No_ auto_ ring 1 RMR 0 RM
E_Tone2
Enable programmable tone generator 2 Programmable tone generator 2 disabled Programmable tone generator 2 enabled Programmable tone generator 1 disabled Programmable tone generator 1 enabled Fixed frequency for tone generator 2 selected Programmed frequency for tone generator 2 selected Fixed frequency for tone generator 1 selected Programmed frequency for tone generator 1 selected Make for pulse dialing Break for pulse dialing
E_Tone2= 0: E_Tone2= 1: E_Tone1 E_Tone1= 0: E_Tone1= 1: P_Tone2 P_Tone2= 0: P_Tone2= 1: P_Tone1 P_Tone1= 0: P_Tone1= 1: Pulse Pulse = 1: Pulse = 0: No_auto_ring
Enable programmable tone generator 1
User-programmed frequency or fixed frequency selected
User programmed frequency or fixed frequency selected
Pulse dialing
No_auto_ring= 1:Test mode to disable automatic switching from sleep mode to ringing mode after valid ring. No_auto_ring= 0:Normal operating mode, ALIS switches automatically to ringing mode after ringing detection RMR Result of ringing metering function (this bit cannot be written) Detected level was lower than the programmed1) reference Detected level was higher than the programmed reference. See "Flow of Ring Sequence and Detection" on page 65. RMR = 0: RMR = 1: RM
Ringing metering function2)
1
The threshold can be programmed in the CRAM. Coefficients see "Ring Detect" on page 81.
Semiconductor Group
40
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Programming ALIS RM = 0: RM = 1: 6.2.3 Bit Ringing metering function disabled Ringing metering function enabled
CR2 Configuration Register 2 (Caller ID) 7 6 COT/R 5 4 IDR 3 Call_ pon 2 Call_ en 1 Call_I 0 Call_II
Default value: 00H COT/R 0 0 0: 0 0 1: 0 1 0: 1 0 1: 1 1 0: IDR IDR = 0: IDR = 1: Call_pon Call_pon = 0: Call_pon = 1: Select cut-off transmit/receive paths Normal operation COR16 Cut-off receive path at 16 kHz (input of TH filter) COR8 Cut-off receive path at 8 kHz COT2M Cut-off transmit path at 2 MHz (POFI output) COT64 Cut-off transmit path at 64 KHz (IM filter input) Initialize data RAM Normal operation selected Contents of data RAM set to 0 (for test purposes) Enable the caller ID Path Caller ID Path disabled Caller ID Path enabled (see Call_pctl in "CR3 Configuration Register 3 (Test Loops)" on page 42) Caller ID decoding enabled Caller ID decoding disabled
Call_en
Enable the caller ID
Call_en = 1: Call_en = 0: Call_I only)
Result of caller ID decoding (this bit cannot be written, for test purposes 1st tone of caller ID detected 1st tone of caller ID not detected
Call_I = 1: Call_I = 0: Call_II only)
Result of caller ID decoding (this bit can not be written, for test purpose 2nd tone of caller ID detected
Call_II = 1:
2
Explanation of the ringing metering function: The ring signal is rectified, and the voltage is measured. If the voltage exceeds a certain value, the bit RMR is set to '1'.
Semiconductor Group
41
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Programming ALIS Call_II = 0: 6.2.4 Bit 2nd tone of caller ID not detected
CR3 Configuration Register 3 (Test Loops) 7 6 5 4 3 SEL 2 Call_ pctl 1 DHP-R 0 DHP-X
Test Loops
Default value: 00H Test Loops Four-bit field for selection of analog and digital loopbacks 0101 ALB_CIF: Cap. interface loop of the signal from the input circuit (CAP_B11/12 is connected to the output drivers (CAP_A11/12, CAP_C11/12) ALB-CID: Caller ID loop; the output signal from the caller ID comparator is connected to the output drivers of the capacitor interface (CAP_A11/12, CAP_C11/12); DLB-2M: Loop via HW filters; DLB-128k: Loop inside DSP; DLB-64k: Loop inside DSP; DLB-PCM: Loop via PCM interface; the received data is sent back in the next frame; Test loop selection SEL = 0: SEL = 1: Call_pctl Call_pctl = 0: Call_pctl = 1: Test loops via impedance path selected Test loops via receive path selected Caller ID path control Caller ID interface enabled during ringing mode Caller ID interface will be selected by the Call_pon bit in CR2
1000
1001 1100 1101 1111 SEL
Note: The path can be controlled manually for test purposes. Must be '0' for normal operation.
DHP-X Disable high-pass in transmit direction Transmit high-pass enabled Transmit high-pass disabled Receive high-pass enabled Receive high-pass disabled DHP-X = 0: DHP-X = 1: DHP-R DHP-R = 0: DHP-R = 1:
Disable high-pass in receive direction
Semiconductor Group
42
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Programming ALIS 6.2.5 Bit CR4 Configuration Register 4 (Analog Gain) 7 AGR_ Z1 Default value: 00H AGR_Z Analog gain in impedance loop (can be used as AGC) Analog gain A disabled (0 dB amplification) Analog gain A enabled (2.5 dB amplification) Analog gain A enabled (6 dB amplification) Analog gain A enabled (-3.5 dB amplification)1) Analog gain B disabled (0 dB amplification) Analog gain B enabled (3.5 dB amplification) Analog gain B enabled (6 dB amplification) Analog gain A disabled (0 dB amplification) Analog gain A enabled (-6 dB amplification) Analog gain A enabled (3.5 dB amplification) Analog gain A enabled (-2.5 dB amplification) Enable interrupts Disable interrupts FSC must be generated externally FSC generated internally AGR_Z = 00: AGR_Z = 11: AGR_Z = 10: AGR_Z = 01: AGR_R AGR_R = 00: AGR_R = 01: AGR_R = 11: AGX AGX = 00: AGX = 01: AGX = 10: AGX = 11: Int_en Int_en = 1: Int_en = 0: Fsc_en Fsc_en = 0: Fsc_en = 1 6 AGR_ Z0 5 AGR_ R1 4 AGR_ R0 3 AGX 1 2 AGX 0 1 Int_en 0 Fsc_ en
Analog gain in receive direction (can be used as AGC)
Analog gain in transmit direction (can be used as AGC)
Interrupt enable
FSC signal-source selection
1
Note: the sum of AGR_Z and AGX should be zero for stability reasons.
Semiconductor Group
43
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Programming ALIS 6.2.6 Bit CR5 Configuration Register 5 (Version) 7 V_7 V 6 V_6 5 V_5 4 V_4 3 V_3 2 V_2 1 V_1 0 V_0
The current version of ALIS (this byte cannot be written) 02H for ALIS V2.1
6.3
XOP Command
The ALIS digital command/indication interface to the line and external equipment is configured and evaluated by the Extended Operation (XOP) command. Other common functions are also assigned by this command. Bit 7 RST 6 0 5 RW 4 1 3 1 2 LSEL2 1 LSEL1 0 LSEL0
RST RST = 0: RST = 1: RW RW = 0: RW = 1: LSEL
Software reset (same as RESET pin) No reset ALIS is reset to the default settings Read / Write: Enables reading from or writing to ALIS Write to ALIS Read from ALIS Length select information. Specifies the number of subsequent data bytes 1 byte of data follows (XR0) 2 bytes of data follow (XR1, XR0) : LSEL= 111 8 bytes of data follow (XR7, ...., XR1, XR0)
LSEL = 000 LSEL = 001
6.3.1
XR0 Extended Register 0 (Interrupt Register)
Any interrupt indications can be monitored in the interrupt register. Interrupts can be signaled via a logic '1' on the INT line. After an indication has occurred, further loading of the interrupt register is locked until its contents are read via the -controller interface. Reading the interrupt register XR0 releases the lock and the INT line is set to low again. See "Interrupt Controller" on page 60 for more details.
Semiconductor Group
44
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Programming ALIS For XOP Read Commands Bit 7 0 6 Wake_ up 5 Cadence 4 RING 3 Caller _ID 2 VDD_ OK 1 SI_1 0 SI_0
Default value: 00H Wake_up Wake_up Interrupt No Wake_up Interrupt If CLK_OFF bit is set (see "XR6 Extended Register 6 (Power State)" on page 49) and a ringing signal occurs1), then a Wake_up Interrupt is generated. To clear this interrupt, the CLK_OFF bit must be reset and ALIS-D must be supplied with a clock. No cadence Interrupt (time between two ring bursts is available from XR4) Time between two ring bursts exceeds the programmed time (see "XR2 Extended Register 2 (Cadence Time Out)" on page 47). Wake_up = 0: Wake_up = 1:
Cadence
Cadence Interrupt
Cadence = 0: Cadence = 1:
RING
Ring Interrupt No ring burst No_auto_ring=0: this bit is set after the second valid ring burst No_auto_ring=1: ALIS stays in sleep mode and waits for a command. This bit represents the ring detection signal from ALIS-A. See"CR1 Configuration Register 1 (Dialing)" on page 40.
RING = 0: RING = 1:
Note: In this case, a command is mandatory to avoid a deadlock.
Caller_ID Caller ID Interrupt No caller ID preamble detected Caller ID preamble detected Power supply for ALIS-A is available and the connection between ALIS-A and ALIS-D is working No power supply for ALIS-A or no connection between ALIS-A and ALIS-D Caller_ID = 0: Caller_ID = 1: VDD_OK VDD_OK = 1: VDD_OK = 0:
Vdd at ALIS-A Interrupt
1
Any signal at the line with a voltage of more than 18 V. To decode a valid ring signal, ALIS must be switched to the Ringing Mode.
Semiconductor Group
45
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Programming ALIS SI_0 SI_1 Status of pin SI_0 at ALIS-A is transferred to this register Status of pin SI_1 at ALIS-A is transferred to this register
Note: The auxiliary pins (SO_0, SO_1, SI_0, SI_1) are isolated via the capacitor interface.
With XOP-Write Commands to Control the SO Output Pins
Bit
7 0
6 0
5 0
4 0
3 0
2 SO_2
1 SO_1
0 SO_0
SO_0 SO_1 SO_2 6.3.2
Pin SO_0 at ALIS-A is set to the assigned value if ALIS is not in sleep mode Pin SO_1Q at ALIS-A is set to the inverted assigned value if ALIS is not in sleep mode Pin SO at ALIS-D is set to the assigned value XR1 Extended Register 1 (Interrupt Enable Register)
Bit
7 0
6 M_Wa ke_up
5 M_ Caden ce
4 M_ RING
3 M_ Caller_ ID
2 M_ VDD_ OK
1 M_ SI_1
0 M_ SI_0
Default value: 00H M_Wake_up M_Wake_up = 0:Disable Wake_up Interrupt M_Wake_up = 1:Enable Wake_up Interrupt M_Cadence M_Cadence = 0:Disable Cadence Interrupt M_Cadence = 1:Enable Cadence Interrupt M_RING M_RING = 0: M_RING = 1: M_Caller_ID
Semiconductor Group 46 Data Sheet 06.98
Disable RING Interrupts Enable RING Interrupts
PSB 4595 / PSB 4596 Analog Line Interface Solution
Programming ALIS M_Caller_ID = 0:Disable Caller_ID Interrupt M_Caller_ID = 1:Enable Caller_ID Interrupt M_VDD_OK M_VDD_OK = 0:Disable VDD Interrupt M_VDD_OK = 1:Enable VDD Interrupt M_SI_1 M_SI_1 = 0: M_SI_1 = 1: M_SI_0 M_SI_0 = 0: M_SI_0 = 1: 6.3.3 Bit Disable SI_0 Interrupts Enable SI_0 Interrupts Disable SI_1 Interrupts Enable SI_1 Interrupts
XR2 Extended Register 2 (Cadence Time Out) 7 CTO 7 6 CTO 6 5 CTO 5 4 CTO 4 3 CTO 3 2 CTO 2 1 CTO 1 0 CTO 0
Default value: 7DH CTO ms Programmable Cadence Time Out: If the time between the first two ring bursts exceeds the time progammed in this register, a cadence interrupt is generated. The time-out is programmable in steps of 64 ms up to 16 seconds.
Note: 00 means no cadence time-out programmed - no interrupt will be generated.
6.3.4 XR3 Extended Register 3 (DC Characteristic)
Bit
7 AGB1
6 AGB0
5 B_off
4 DCU 1
3 DCU 0
2 DCI
1 DCR 1
0 DCR 0
AGB
Analog gain for analog trans-hybrid filter Gain for analog trans-hybrid filter = 1.9 dB Gain for analog trans-hybrid filter = 0 dB Gain for analog trans-hybrid filter = -2.1 dB Gain for analog trans-hybrid filter = -3.4 dB
AGB = 00: AGB = 01: AGB = 10: AGB = 11: B_off
Enable analog trans-hybrid filter
Semiconductor Group
47
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Programming ALIS B_off = 0: B_off = 1: Analog trans-hybrid filter on Analog trans-hybrid filter off
Note: The analog trans-hybrid filter is an analog pre-filter optimized for long loops with a trans-hybrid loss of about 10 dB.
DCU = 00: DCU = 01: DCU = 10: DCU = 11: U0 for DC characteristic is 0 V U0 for DC characteristic is 1.5 V U0 for DC characteristic is 3.5 V U0 for DC characteristic is 7.2 V
Note: These values do not include the voltage drop at the external diodes. See also "DC Characteristics" on page 88.
DCI DCI = 0: DCI = 1: DCR Limit current for the DC characteristic Limit current is 100 mA Limit current is 50 mA Resistance of the DC characteristic DCR = 00: DCR = 01: DCR = 10: DCR = 11: R for DC characteristic is 280 R for DC characteristic is 240 R for DC characteristic is 200 R for DC characteristic is 100
Note: If DCU is programmed to 7.2V (DCU = 11), then R for the DC characteristic is always 70 irrespective of the contents of DCR. See "DC Termination" on page 84.
6.3.5 XR4 Extended Register 4 (Cadence)
Bit
7 C_7
6 C_6
5 C_5
4 C_4
3 C_3
2 C_2
1 C_1
0 C_0
C
ms (read only) Contains the measured time between the two first ring bursts (time step 64 ms) if the time is below the cadence time-out as programmed in XR2.
Semiconductor Group
48
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Programming ALIS 6.3.6 XR5 Extended Register 5 (Ring Timer)
Bit
7 T_7
6 T_6
5 T_5
4 T_4
3 T_3
2 T_2
1 T_1
0 T_0
Default value: 22H T ms Ring latency timer, programmable in steps of 2 ms ALIS-A decodes any signal of more than 18 V at TIP/RING. This signal will be transferred over to ALIS-D for further processing. This timer bridges the time when the sine wave of the ring signal is below the 18 V mark to ensure that ALIS does not fall back into sleep mode. 6.3.7 XR6 Extended Register 6 (Power State)
Bit
7 0
6 0
5 0
4 CKL_ OFF
3 0
2 0
1 CPS1
0 CPS0
Default value: 00H CPS Current Power State (read only) CPS = 00 CPS = 01 CPS = 10 CPS = 11 Power state is sleep Power state is ringing Power state is conversation Power state is pulse dialing
Note: The power mode can be programmed by the SOP command. The current power state will be indicated in this register.
CLK_OFF Turn off master clock (ALIS is programmed to deep-sleep mode) Master clock is not turned off internally Master clock is turned off internally
CLK_OFF = 0 CLK_OFF = 1
Note: The external clock can be turned off after setting the CLK_OFF bit. The clock must be switched on for programming ALIS.
Semiconductor Group
49
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Programming ALIS
Note: When a crystal is used, it will be turned off automatically when the CLK_OFF bit is set. It will be switched on when the CS signal goes low. However, the user must wait until the crystal is working before initiating a command.
6.3.8 Bit XR7 Extended Register 7 (Vdd) 7 0 Default value: 00H Vdd Vdd = 00 Vdd = 01 Vdd = 10 Vdd = 11 6.4 Current Power State Vdd of ALIS-A is 4.25 V Vdd of ALIS-A is 4.38 V (test purpose only) Vdd of ALIS-A is 3.90 V (test purpose only) Vdd of ALIS-A is 4 V 6 0 5 0 4 0 3 0 2 Vdd1 1 Vdd0 0 0
COP Command
A Coefficient Operation (COP) command allows the coefficients for the programmable filters to be written to the ALIS coefficient RAM or read from this RAM via the -controller interface for verification.
Bit
7 0
6 0
5 RW
4 0
3 CODE 3
2 CODE 2
1 CODE 1
0 CODE 0
RW RW = 0 RW = 1 CODE 0 0 0 0 0 0 0 0 0 1
Read/Write Subsequent data is written to ALIS Read data from ALIS includes the number of following bytes and the filter address 0 0 1 1 0 0 1 0 1 0 TH filter coefficients (part 1) TH filter coefficients (part 2) TH filter coefficients (part 3) Ringer impedance (part 1) IM filter coefficients (part 1) (followed by 8 bytes of data) (followed by 8 bytes of data) (followed by 8 bytes of data) (followed by 8 bytes of data) (followed by 8 bytes of data)
Semiconductor Group
50
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Programming ALIS
0 0 0 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1
IM filter coefficients (part 2) Ringer impedance (part 2) FRR filter coefficients FRX filter coefficients AR filter coefficients AX filter coefficients Tone1 coefficients Tone2 coefficients Level metering ringing Caller ID 1st tone Caller ID 2nd tone
(followed by 8 bytes of data) (followed by 8 bytes of data) (followed by 8 bytes of data) (followed by 8 bytes of data) (followed by 4 bytes of data) (followed by 4 bytes of data) (followed by 4 bytes of data) (followed by 4 bytes of data) (followed by 4 bytes of data) (followed by 8 bytes of data) (followed by 8 bytes of data)
6.5
CAO Command
A CAO (caller ID operation) command allows the decoded caller ID to be read. A CAO command is always followed by 512 bytes of data. Bit 7 0 RW RW = 0 RW = 1 6 1 5 RW 4 1 3 1 2 0 1 0 0 0
Read/Write Subsequent data is written to ALIS (test purposes only) Read data from ALIS
Semiconductor Group
51
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Programming ALIS 6.6 6.6.1 Bit CR0 CR1 CR2 CR3 CR4 CR5 AGR_ Z1 V_7 Register Summary CR Registers: 7 TH E_ Tone2 6 IM E_ Tone1 COT/R TestLoops AGR_ Z0 V_6 AGR_ R1 V_5 AGR_ R0 V_4 5 FRX P_ Tone2 4 FRR P_ Tone1 IDR 3 AX Pulse Call_p on SEL AGX 1 V_3 2 AR No_ auto Call_e n Cal _pctl AGX 0 V_2 1 RIP RMR Call_I DHP-R Int_en V_1 0 CLK_E XT RM Call_II DHP-X Fsc_ en V_0
Table 5: Summary of CR Registers 6.6.2 Bit XR0/ R XR0/ W XR1 XR2 XR3 XR4 XR5 XR6 XR7 XR Registers: 7 0 0 0 CTO 7 AGB1 C_7 T_7 0 0 6 Wake_ up 0 M_Wa ke_up CTO 6 AGB0 C_6 T_6 0 0 5 Caden ce 0 M_Cad ence CTO 5 B_off C_5 T_5 0 0 4 RING 0 M_ RING CTO 4 DCU 1 C_4 T_4 CLK_O FF 0 3 Caller_ ID 0 M_Call er_ID CTO 3 DCU 0 C_3 T_3 0 0 2 VDD_ OK SO_2 M_VD D_OK CTO 2 DCI C_2 T_2 0 Vdd1 1 SI_1 SO_1 M_ SI_1 CTO 1 DCR 1 C_1 T_1 CPS1 Vdd0 0 SI_0 SO_0 M_ SI_0 CTO 0 DCR0 C_0 T_0 CPS0 0
Table 6: Summary of CR Registers
Semiconductor Group
52
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
ALIS Command Structure 7 ALIS Command Structure
The sections below show the structure of the SOP, XOP, COP and CAO write and read commands. Section 7.5 shows an example of a mixed command. 7.1 7.1.1 SOP Commands SOP - Write Commands DIN SOP write 1 byte CR0 7 6 5 4 3 2 1 0 Bit xx010000 Data 76543210 Idle Idle DOUT
DIN SOP write 2 bytes CR1 CR0
7 6 5 4 3 2 1 0 Bit xx010001 Data Data
76543210 Idle Idle Idle
DOUT
DIN SOP write 3 bytes CR2 CR1 CR0
7 6 5 4 3 2 1 0 Bit xx010010 Data Data Data
76543210 Idle Idle Idle Idle
DOUT
DIN SOP write 4 bytes CR3 CR2 CR1 CR0
7 6 5 4 3 2 1 0 Bit xx010011 Data Data Data Data
76543210 Idle Idle Idle Idle Idle
DOUT
Semiconductor Group
53
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
ALIS Command Structure 7.1.2 SOP - Read Commands
DIN SOP read 1 byte
7 6 5 4 3 2 1 0 Bit xx110000 Idle Idle
76543210 Idle 10000001 Data
DOUT ID CR0
DIN SOP read 2 bytes
7 6 5 4 3 2 1 0 Bit xx110001 Idle Idle Idle
76543210 Idle 10000001 Data Data
DOUT ID CR1 CR0
DIN SOP read 3 bytes
7 6 5 4 3 2 1 0 Bit xx110010 Idle Idle Idle Idle
76543210 Idle 10000001 Data Data Data
DOUT ID CR2 CR1 CR0
DIN SOP read 4 bytes
7 6 5 4 3 2 1 0 Bit xx110011 Idle Idle Idle Idle Idle
76543210 Idle 10000001 Data Data Data Data
DOUT ID CR3 CR2 CR1 CR0
Note: x: in accordance with the description of the power-up operation command. See "SOP Command" on page 38.
Semiconductor Group
54
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
ALIS Command Structure 7.2 7.2.1 XOP Commands XOP - Write Commands
DIN XOP write 2 bytes XR1 XR0
7 6 5 4 3 2 1 0 Bit 00011001 Data Data
76543210 Idle Idle Idle
DOUT
DIN XOP write 3 bytes XR2 XR1 XR0
7 6 5 4 3 2 1 0 Bit 00011010 Data Data Data
76543210 Idle Idle Idle Idle
DOUT
7.2.2
XOP - Read Commands
DIN XOP read 1 byte
7 6 5 4 3 2 1 0 Bit 00111000 Idle Idle
76543210 Idle 10000001 Data
DOUT ID XR0
DIN XOP read 2 bytes
7 6 5 4 3 2 1 0 Bit 00111001 Idle Idle Idle
76543210 Idle 10000001 Data Data
DOUT ID XR1 XR0
DIN XOP read 3 bytes
7 6 5 4 3 2 1 0 Bit 00111010
76543210 Idle
DOUT
Semiconductor Group
55
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
ALIS Command Structure Idle Idle Idle Idle 10000001 Data Data Data ID XR2 XR1 XR0
7.3 7.3.1
COP Command COP - Write Commands
DIN COP write 4 bytes Coeff. 3 Coeff. 2 Coeff. 1 Coeff. 0
7 6 5 4 3 2 1 0 Bit 0000bbbb Data Data Data Data
76543210 Idle Idle Idle Idle Idle
DOUT
DIN COP write 8 bytes Coeff. 7 Coeff. 6 Coeff. 5 Coeff. 4 Coeff. 3 Coeff. 2 Coeff. 1 Coeff. 0
7 6 5 4 3 2 1 0 Bit 0000bbbb Data Data Data Data Data Data Data Data
76543210 Idle Idle Idle Idle Idle Idle Idle Idle Idle
DOUT
Semiconductor Group
56
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
ALIS Command Structure 7.3.2 COP - Read Commands
DIN COP read 4 bytes
7 6 5 4 3 2 1 0 Bit 0010bbbb Idle Idle Idle Idle Idle
76543210 Idle 10000001 Data Data Data Data
DOUT ID Coeff.3 Coeff.2 Coeff.1 Coeff.0
DIN COP read 8 bytes
7 6 5 4 3 2 1 0 Bit 0010bbbb Idle Idle Idle Idle Idle Idle Idle Idle Idle
76543210 Idle 10000001 Data Data Data Data Data Data Data Data
DOUT ID Coeff.7 Coeff.6 Coeff.5 Coeff.4 Coeff.3 Coeff.2 Coeff.1 Coeff.0
Note: b: in accordance with the description of the COP command. See "COP Command" on page 50.
Semiconductor Group
57
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
ALIS Command Structure 7.4 7.4.1 CAO Command CAO - Write Commands
DIN CAO write
7 6 5 4 3 2 1 0 Bit 01011000 Caller ID 512 Caller ID 511 Caller ID 510 ... Caller ID 1
76543210 Idle Idle Idle Idle Idle Idle
7.4.2
CAO - Read Commands
DIN CAO read
7 6 5 4 3 2 1 0 Bit 01111000 Idle Idle Idle Idle Idle
76543210 10000001 Data Data
DOUT ID Caller ID 512 Caller ID 511 ... Caller ID 1
Data
Semiconductor Group
58
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
ALIS Command Structure 7.5 Example of a Mixed Command
Every single command must begin with a falling edge of CS. DIN SOP write 4 bytes CR3 CR2 CR1 CR0 XOP write 2 bytes XR1 XR0 COP write 4 bytes Coeff. 3 Coeff. 2 Coeff. 1 Coeff. 0 SOP read 3 bytes 7 6 5 4 3 2 1 0 Bit xx010011 Data Data Data Data 00011001 Data Data 0000bbbb Data Data Data Data xx110010 Idle Idle Idle Idle COP read 4 bytes 0010bbbb Idle Idle Idle Idle Idle XOP read 1 byte 00111000 Idle Idle 76543210 Idle Idle Idle Idle Idle Idle Idle Idle Idle Idle Idle Idle Idle Idle 10000001 Data Data Data Idle 10000001 Data Data Data Data Idle 10000001 Data ID XR0 ID Coeff.3 Coeff.2 Coeff.1 Coeff.0 ID CR2 CR1 CR0 DOUT
Semiconductor Group
59
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Interrupt Controller 8 Interrupt Controller
There are seven different sources that can cause interrupts in ALIS. The status of these sources are read from interrupt register XR0. Every interrupt source can be enabled individually in interrupt-enable register XR1. To monitor an interrupt source, the corresponding bit must be set in XR1. If an enabled interrupt indication occurs, the interrupt register XR0 is locked. The lock is released when the interrupt register XR0 is read. Any interrupt indication occurring during a locked period will be detected after the lock has been released. NOTE: An interrupt is only acknowledged when the appropriate bit has been set in the interrupt-enable register XR1. The INT pin can be used as an indication to allow external hardware to read the interrupt register. If the Int_en bit (CR4) is set, the INT pin goes to '1' whenever the interrupt register is locked. The host must analyze the bits in the interrupt register to determine the cause of the pending interrupt. All interrupt sources that are not enabled must be ignored by the host in its analysis. It is possible for several sources together to cause only one interrupt! (i.e. breakdown of serial connection to ALIS-A: VDD_OK, SI_0, SI_1; if more interrupts occur during the locked period). If the interrupt was caused by a CADENCE, RING, CALLER_ID or WAKE_UP interrupt, the indication that caused the pending interrupt is reset by reading interrupt register XR0. As only one interrupt can be stored internally, the host must respond immediately to avoid loss of interrupts. 8.1 Nature and Sources of Interrupts:
There are three different kinds of interrupt indications depending on their source as shown in the sections below.
Semiconductor Group
60
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Interrupt Controller 8.1.1 Interrupt Indication at Signal Change: SI_0, SI_1, VDD_OK; Signaling pins at ALIS-A (SI_0, SI_1); VDD_OK indicates that ALIS-A has a power supply and that the serial connection via the cap. interface is working; Interrupt indication: Any change in the signals will generate an interrupt. The host must store the previous state of these bits to check which signal caused an interrupt. These bits will go to `0' when there is no connection to ALIS-A via the cap. interface. This will cause interrupts! At lock-release time, the current signal is compared to the signal stored at lock time. Any difference will cause another interrupt.
Interrupts: Sources:
Note: Lock behaviour:
8.1.2
Interrupt Indication at Event: CALLER_ID, RING, CADENCE; CALLER_ID: Complete marker sequence of caller ID detected; RING: Depending on automatic mode switching: - detection of more than 18 V at TIP/RING (No_auto_ring '1'); - 2nd valid ringing (No_auto_ring '0'); CADENCE: Time-out for 2nd ring burst; the time can be programmed in XR2 (No_auto_ring '0');
Interrupts: Sources:
Interrupt indication:
These interrupts indicate that a certain event has occurred. The bits are set from their source and can be reset from the host only by reading the interrupt register. Whenever one of these bits is set, this is an indication that this event has occurred. If one of these events occurs while the register is locked, another interrupt will be generated as soon as the lock is released.
Lock behaviour:
Semiconductor Group
61
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Interrupt Controller 8.1.3 Interrupt Indication at High Level:
If ALIS-D is set to deep-sleep mode (XR6, CLK_OFF = '1'), this interrupt indicates that there is a signal greater than 18 V at TIP/RING. Interrupts: Source: Interrupt indication: WAKE_UP; ring_detect signal from ALIS-A; More than 18 V at TIP/RING. It is cleared after the interrupt register has been read. Another interrupt is generated if the signal remains higher than 18 V. The interrupt will lock the register as soon as clock is turned on again! (If no clock signal is applied to ALIS-D, the other interrupts cannot occur anyway.)
Lock behaviour:
Semiconductor Group
62
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Operating Modes 9 9.1 ALIS-D: After initial application of VDD (power-on reset), reset of the setting pin to '0' during operation or a software reset (see XOP command), ALIS-D enters the basic settings mode. Basic settings means that the ALIS-D configuration registers CR0... CR5 and XR0... XR7 are initialized to the default value (sleep mode). All programmable filters are disabled. If any voltage is applied to any input pin before the initial application of VDD, ALIS may be unable to enter the basic settings mode. In this case, it is necessary to reset ALIS or to initialize its configuration registers to the default value. ALIS-A: When the plug is connected to TIP/RING and the hook switch is closed, ALIS-A generates its supply voltage from the line current and performs a power-on reset. 9.2 Deep Sleep Mode Operating Modes Reset (Basic Settings Mode)
Condition: RESET low, MCLK can be down
Condition: RESET '1', if used the external master clock can be deactivated. It can be entered from any mode by programming the CLK_OFF bit in XR6. During deep sleep mode, the serial control interface is ready to receive and register commands only when MCLK is switched on (see "XR6 Extended Register 6 (Power State)" on page 49). Incoming rings will be indicated by the Wake_up interrupt. 9.3 Sleep Mode
Condition: RESET '1', if used the external master clock must be activated. When the RESET pin (RESET state) is released, ALIS enters sleep mode. ALIS is forced to sleep mode when the PU (power up) bits are set to '00' in the SOP command. During sleep mode, the serial control interface is ready to receive commands and transmit data. Voice data received on the DAT_IN pin will be ignored. The ALIS configuration registers the caller ID RAM, and the coefficient RAM can be loaded and read back in this mode. 9.4 Ringing Mode
Condition: RESET '1', if used the external master clock must be activated. This mode is entered automatically when bit No_auto_ring is set to 0 from sleep mode after the first ringing pulse or when the PU bits are set to '01' in the SOP command. In this mode, ALIS will measure the level, frequency and cadence of the ringing signal. The cadence between the first two ring bursts is stored in XR4. If the Caller_en bit is enabled, an incoming caller ID will be decoded and stored (see CAO command).
Semiconductor Group 63 Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Operating Modes 9.5 Conversation Mode
Condition: RESET '1', if used the external master clock must be activated. The operating mode is entered upon recognition of the PU bits set to '10' in a SOP command. In conversation mode, the AC impedance loops and the DC loops are switched on. The programmed AC and DC characteristics are implemented by these loops. The receive and transmit paths are on. The tone generators are available. 9.6 Pulse Dialing Mode
Condition: RESET '1', if used the external master clock must be activated. The pulse dialing mode is entered by setting the PU bits to '11' in a SOP command. In pulse dialing mode, the external transistor T1 is switched on and off in accordance with the PULSE bit in CR1. The pulse timing must be controlled by the host.
Semiconductor Group
64
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Operating Modes 9.7 Operating Flowchart
clock_off Bit is 1
DEEP SLEEP
wake_up
1
command 2 ring (in no_auto_ring = 1 and ring) cadence
SLEEP
first ring ends & no caller ID || no valid ring command
ringing & no_auto_ring = 0 3 ring (if no_auto_ring = 0 and second valid ring) vdd si0 si1 caller_id
RINGING
command on hook vdd si0 si1
PULSE DIALING
CON VERSATION
off hook
1 2 3
user has to programm clock_off bit and supply clock signal in case of external clock after this interrupts the alis -d system will stay in sleep mode. A user command to ringing is mandatory. after this interrupts the alis -d system will stay in ringing mode. A user command to active or sleep is mandatory.
Figure 25 9.8
Operating Mode Transitions and Interrupts
Flow of Ring Sequence and Detection
Ring detection works in ALIS as a two step procedure. In a first step, ALIS-A will detect any AC signal at TIP and RING with a peak value of more than 18 V and will generate the Ring_detect signal. This signal can either generate an interrupt or switch ALIS to ringing mode depending on the No_auto_ring bit in CR1 (see "CR1 Configuration Register 1 (Dialing)" on page 40). The current power mode can
Semiconductor Group
65
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Operating Modes be read from the register XR6 (see "XR6 Extended Register 6 (Power State)" on page 49). As a second step, only if enabled by RM (see "CR1 Configuration Register 1 (Dialing)" on page 40) in ringing mode, the TIP/RING signal will be band-filtered and compared to a programmable threshold. If the result is higher than this threshold, the RMR-bit signal is set to one. The ring threshold can be polled as the RMR bit in CR1. The following flow charts show these sequences in more detail.
Note: The initial connection to TIP RING looks like a ring voltage to ALIS-A. The reaction of ALIS-D depends on the auto_ring bit: a) auto_ring: ALIS-D goes to ringing, since the spike is not a valid ringing signal. ALIS-D then goes to sleep mode. b) No_auto_ring: ALIS-D generates a ring interrupt, stays in sleep mode and waits for a command. The user has to switch ALIS-D to ringing and poll the RMR bit. If ringing is not valid (RMR bit = 0), the chip can be set back to sleep mode.
To detect a valid ring signal and caller ID, ALIS must be programmed to the following setting: * set RM to '1' (see "CR1 Configuration Register 1 (Dialing)" on page 40) * cadence time-out must be programmed to PTT requirements (see "XR2 Extended Register 2 (Cadence Time Out)" on page 47) * ring latency timer must be programmed to a value higher than four times the ring period (see "XR5 Extended Register 5 (Ring Timer)" on page 49) * valid ring coefficients * set No_auto_ring to '0' (see "CR1 Configuration Register 1 (Dialing)" on page 40) * enable Call_en (see "CR2 Configuration Register 2 (Caller ID)" on page 41) * enable corresponding interrupts
Semiconductor Group
66
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Operating Modes 9.8.1 Successful Ring Sequence, Auto Ring Enabled, no Caller ID
The following chart and diagram show the successful flow of a ring-event detection with automatic power-mode change (No_auto_ring = 0, Caller_en = 0, RM = 1). In this operating mode, ALIS will not decode a caller ID.
1 s t R IN G B u rs t 2 n d R IN G B u rs t
R in g _ d e te c t
R in g _ th r e s h o ld
Line:
on hook
1st ring
on hook
2nd ring
on hook
off hook
Mode: Counter:
sleep
ringing
sleep
ringing
conv.
ringcounter cadence counter
ringcounter
Interrupt:
VDD_ok
VDD_ok
VDD_ok
VDD_ok VDD_ok ring
Figure 26 Successful Ring Sequence, No_auto_ring = 0; Caller_en = 0
Semiconductor Group
67
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Operating Modes 9.8.2 Successful Ring Sequence, Auto Ring Enabled, Caller ID
The following chart and diagram show the successful flow of a ring-event detection with automatic power-mode change (No_auto_ring = 0, Caller_en = 1, RM = 1). In this operating mode, ALIS will decode and store a caller ID.
1 s t R IN G B u rs t 2 n d R IN G B u rs t
C a lle r ID
R e a d in g C a lle r Id
R in g _ d e te c t
R in g _ th r e s h o ld
Line:
on hook
1st ring
on hook
caller ID
on hook
2nd ring
on hook
off hook
Mode: Counter:
sleep
ringing
conv.
ringcounter cadence counter
ringcounter
Interrupt:
VDD_ok
VDD_ Caller_ID ok
VDD_ok
Vdd_ok ring
Vdd_ok
Figure 27 Successful Ring Sequence, No_auto_ring = 0; Caller_en = 1
Semiconductor Group
68
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Operating Modes 9.8.3 Unsuccessful Ring Sequence, Auto Ring Enabled, no Caller ID
The following chart and diagram show the unsuccessful flow of a ring-event detection because of no 2nd ring with automatic power-mode change (No_auto_ring = 0, Caller_en = 0, RM = 1).
1 s t R IN G B u rs t 2 n d R IN G B u rs t
R in g _ d e te c t
R in g _ th r e s h o ld
Line:
on hook
1st ring
on hook
Mode: Counter:
sleep
ringing
sleep
ringcounter cadence counter
Interrupt:
VDD_ok
VDD_ok
cadence
Figure 28 Unsuccessful Ring Sequence, No_auto_ring = 0; Caller_en = 0
Semiconductor Group
69
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Operating Modes 9.8.4 Unsuccessful Ring Sequence, Auto Ring Enabled, Caller ID
The following chart and diagram show the unsuccessful flow of a ring-event detection because of no 2nd ring with automatic power-mode change (No_auto_ring = 0, Caller_en = 1, RM = 1).
1 s t R IN G B u rs t 2 n d R IN G B u rs t
C a lle r ID
R e a d in g C a lle r Id
R in g _ d e te c t
R in g _ th r e s h o ld
Line:
on hook
1st ring
on hook
caller ID
on hook
Mode: Counter:
sleep
ringing
sleep
ringcounter cadence counter
Interrupt:
VDD_ok
VDD_ok
Caller_ID
cadence
Figure 29 Unsuccessful Ring Sequence, No_auto_ring = 0; Caller_en = 1
Semiconductor Group
70
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Operating Modes 9.8.5 Successful Ring Sequence, Auto Ring Disabled, No Caller ID
The following chart and diagram show the successful flow of a ring-event detection with no automatic power-mode change (No_auto_ring = 1, Caller_en = 0, RM = 1). In this operating mode, ALIS will not decode the caller ID.
1 s t R IN G B u rs t 2 n d R IN G B u rs t
R in g _ d e te c t
R in g _ th r e s h o ld
Line:
on hook
1st ring
on hook
2nd ring
on hook
off hook
Mode: Interrupt:
sleep
ringing
sleep
ringing
conv.
ring
VDD_ok
VDD_ok ring
VDD_ok VDD_ ok
Host CMDs:
ring mode
sleep mode
ring mode
close hook; conv.
poll RMR
poll RMR
Figure 30 Successful Ring Sequence, No_auto_ring = 0; Caller_en = 0
Note: The RMR bit must be polled by the host to verify that the ringing signal is above the programmed threshold level and check the VDD interrupts.
Semiconductor Group
71
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Operating Modes 9.8.6 Successful Ring Sequence, Auto Ring Disabled, Caller ID
The following chart and diagram show the successful flow of a ring-event detection with no automatic power-mode change (No_auto_ring = 1, Caller_en = 1, RM = 1). In this operating mode, ALIS will decode and store the caller ID.
1 s t R IN G B u rs t 2 n d R IN G B u rs t
C a lle r ID
R e a d in g C a lle r Id
R in g _ d e te c t
R in g _ th r e s h o ld
Line:
on hook
1st ring
on hook
2nd ring
on hook
off hook
Mode: Interrupt:
sleep
ringing
conv.
ring
VDD_ok
Caller_ID
VDD_ok ring
VDD _ok
VDD _ok
Host CMDs:
ring mode
close hook; conv. poll RMR
poll RMR
Figure 31 Successful Ring Sequence, No_auto_ring = 1; Caller_en = 1
Note: The RMR bit must be polled by the host to verify that the ringing signal is above the programmed threshold level. By leaving ALIS in ringing mode after the first ring, the caller ID can be detected and stored.
Semiconductor Group
72
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Operating Modes 9.8.7 Unsuccessful Ring Sequence, Auto Ring Disabled, no Caller ID
The following chart and diagram show the unsuccessful flow of a ring-event detection because of no 2nd ring with no automatic power-mode change (No_auto_ring = 1, Caller_en = 0, RM = 1).
1 s t R IN G B u rs t 2 n d R IN G B u rs t
R in g _ d e te c t
R in g _ th r e s h o ld
Line:
on hook
1st ring
on hook
Mode: Interrupt: Host CMDs:
sleep
ringing
sleep
ring
VDD_ok
ring mode poll RMR
sleep mode
Figure 32 Unsuccessful Ring Sequence, No_auto_ring = 1; Caller_en = 0
Note: The RMR bit must be polled by the host to verify that the ringing signal is above the programmed threshold level. The cadence time and number of rings must be calculated by the host.
Semiconductor Group
73
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Operating Modes 9.8.8 Unsuccessful Ring Sequence, Auto Ring Disabled, Caller ID
The following chart and diagram show the unsuccessful flow of a ring-event detection because of no 2nd ring with no automatic power-mode change (No_auto_ring = 0, Caller_en = 1, RM = 1). .
1 s t R IN G B u rs t 2 n d R IN G B u rs t
C a lle r ID
R e a d in g C a lle r Id
R in g _ d e te c t
R in g _ th r e s h o ld
Line:
on hook
1st ring
on hook
caller ID
on hook
Mode: Interrupt: Host CMDs:
sleep
ringing
ring
VDD_ok Caller_ID
ring mode poll RMR
Figure 33 Unsuccessful Ring Sequence, No_auto_ring = 1; Caller_en = 1
Note: The cadence time and the number of rings must be calculated by the host.
Semiconductor Group
74
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Operating Modes 9.8.9 Unsuccessful Ring Sequence, Auto Ring Enabled
The following chart and diagram shows an unsuccessful flow of a ring-event detection because ringing is below the ring threshold level with an automatic power-mode change (No_auto_ring = 0, RM = 1).
1 s t R IN G B u rs t 2 n d R IN G B u rs t
R in g _ d e te c t
R in g _ th r e s h o ld
Line:
on hook
1st ring
on hook
Mode: Counter: Interrupt:
sleep
ringing
sleep
ringcounter
VDD_ok
VDD_ok
Figure 34 Unsuccessful Ring Sequence, No_auto_ring = 0
Semiconductor Group
75
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Operating Modes 9.8.10 Unsuccessful Ring Sequence, Auto Ring Disabled
The following chart and diagram show an unsuccessful flow of a ring-event detection because ringing is below the ring threshold level with no automatic power-mode change (No_auto_ring = 1, RM = 1).
1 s t R IN G B u rs t 2 n d R IN G B u rs t
R in g _ d e te c t
R in g _ th r e s h o ld
Line:
on hook
1st ring
on hook
Mode: Interrupt: Host CMDs:
sleep
ringing
sleep
ring
VDD_ok
ring mode poll RMR
sleep mode
Figure 35 Unsuccessful Ring Sequence, No_auto_ring = 0
Note: RMR will not be '1'
Semiconductor Group
76
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Operating Modes 9.8.11 Start from Deep Sleep Mode
1 s t R IN G B u rs t 2 n d R IN G B u rs t
The following chart and diagram show a start-up procedure from deep sleep mode.
R in g _ d e te c t
R in g _ th r e s h o ld
Line:
on hook
1st ring
Mode:
deep sleep
Interrupt: Host CMDs:
Wake_up
enable MCLK on board any power mode set CLK_OFF = 0
Figure 36 Deep Sleep Start
Note: After the wake_up interrupt, any power mode and operation flow can be programmed as described in the previous sections .
Semiconductor Group
77
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Modem Functions 10 10.1 Modem Functions Pulse Dialing
Pulse dialing will be implemented by shortening the line with external transistor T1. Pulse timing must be controlled by the host. Pulse shaping is implemented in ALIS-A and complies with ETS 300 001 10.2 DTMF Dialing
DTMF Dialing is implemented by two internal tone generators (see "Programming the ALIS DTMF Tone Generators" on page 78). Since the level of tone generator 2 is 3 dB higher than that of tone generator 1, the former should be used for the high frequency group. The frequency accuracy of the tone generators is better than 1%. The absolute transmission level can be programmed using the AX filter. Software for computing the coefficients is available. The tone generators can also be used to generate any in-band sine wave for test or measurement purposes. 10.2.1 Programming the ALIS DTMF Tone Generators
Two independent tone generators are available. When one or both of them are turned on, the voice signal is switched off automatically. A programmable bandpass filter is included to make the generated signal suitable for DTMF. The default frequency for both tone generators is 2000 Hz. Coefficients for other frequencies are generated by a software tool. Byte sequences for programming both tone generators and bandpass filters:
Frequency 697 Hz 770 Hz 852 Hz 941 Hz 1209 Hz 1336 Hz 1477 Hz 1633 Hz
Command 0B *) 0B *) 0B *) 0B *) 0C *) 0C *) 0C *) 0C *)
Byte 1 11 12 13 1D 32 EC AA 9B
Byte 2 B3 33 3C 1B 32 1D AC 3B
Byte 3 5A 5A 5B 5C 52 52 51 51
Byte 4 2C C3 32 CC B3 22 D2 25
Semiconductor Group
78
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Modem Functions
*) 0B is used for programming tone generator 1 0C is used for programming tone generator 2
Table 7: Programming the tone generators The sine wave is filtered by a bandpass, the Q factor of this band filter can be altered in the range from 0 to 7 and can be programmed by setting the first nibble of byte 3 to the corresponding value (always 5 in this table). The resulting signal amplitude can be set by programming the filters AR1 and AR2. 10.3 Caller ID
The caller ID interface is compatible with Bellcore TR-NWT-000030 and SR-TSV002476 as regards generic requirements for transmitting asynchronous voice-band data to customer premises equipment (CPE) from a serving stored-control switching system (SPCS) or a central office (CO). In this service, the information about the calling party is embedded in the silent interval between the first and the second ring. During this period, ALIS receives and stores up to 4096 bits of the1200-baud FSK signal. The decoding also complies with BELL 202 and CCITT V.23 specifications. (see "Programming the ALIS Caller ID Coefficients" on page 81) 10.3.1 Characteristics for Caller ID Parameter Symbol min Input detection level Detect frequencies Bell 202 1 (mark) Bell 202 0 (space) CCITT V.23 1 (mark) CCITT V.23 0 (space) Input noise tolerance Input baud rate Table 8: Characteristics of Caller ID SNR 1188 2178 1280.5 2068.5 20 1188 1200 1212 1200 2200 1300 2100 1212 2222 1319.5 2131.5 Hz Hz Hz Hz dB Hz Bell 202 Vin -36 12.3 Limit Values typ max -9 275 dBm mV Unit Reference
CCITT V.23
Semiconductor Group
79
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Modem Functions 10.3.2 Storage and Reading of Caller ID
The storage of the decoded caller ID is enabled after the first space following the mark state. This event will be indicated by the caller ID interrupt. The maximum storage size is 4096 bits. Start, stop-bit and check-sum decoding must be performed by the host.
TIP/RING
First Ringing
CID FSK
DATA
Second Ringing
channel seizure
mark state
Figure 37 CID Input Timing
When the RAM is read with the CAO command, the received bits will be sent from ALIS in the following order:
DIN: CAOcommand b15 b14 b13 b12 b11 b10 b23 b22 b7 b6 b5 b4 b3 b2 b1 b0 b9 b8 id_byte ...
DOUT:
b0 is the first caller ID data bit after the '0' which ends the marker sequence, b1 the second, b2 the third etc. ... The host can read the caller ID RAM at any time. Note that the read data may be erroneous when caller ID data is received at the same time, as old and new data might be mixed. However, the received caller ID bits are stored correctly in the RAM! -> Try not to read the RAM while the caller ID is being received!
Semiconductor Group
80
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Modem Functions 10.3.3 Programming the ALIS Command 0E (CID1) 0F (CID2)
Caller ID Coefficients
Byte 3,4 CA 09 BA 07 Byte 5,6 99 99 DA XX Byte 7,8 99 99 XX XX
Frequency BELL 202 / CCITT V.23
Byte 1,2 CA 0E FD B5
Table 9: Programming the ALIS Caller ID Coefficients
10.4
Billing Pulse
Billing pulse frequencies of 12 and 16 kHz are filtered out by the digital part of ALIS. No external components are necessary for blocking. 10.5 10.5.1 Ring Detect Functional Description
In sleep mode, any signal greater than a typical value of 18 volts will be detected. Depending on the No_auto_ring bit, either an interrupt will occur or ALIS will be switched automatically to ringing mode. In this mode, the ringing signal will be passed to ALIS-D and decoded. If the ring burst does not meet the programmed requirements within a programmable time, ALIS will return to sleep mode. After a latency time, ALIS will decode the caller ID. When the second valid ring burst occurs, a ring interrupt is generated, signalling the incoming call to the host (see "Flow of Ring Sequence and Detection" on page 65)
Semiconductor Group
81
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Modem Functions 10.5.2 Programming the ALIS Ring Detect Coefficients
Frequency
25 Hz 70Vrms 10 k 1.0 F
Command
0D
Byte 1
AA
Byte 2
05
Byte 3
0F
Byte 4
8E
Command
03 06
Byte 1,2
1C B3 2D 62
Byte 3,4
AB AB A6 BB
Byte 5,6
54 2D 2A 7D
Byte 7,8
62 2D 0A D4
Table 10: Programming ALIS Ring Detect Coefficients
Frequency
50 Hz 50Vrms 10k 0.6 F
Command
0D
Byte 1
22
Byte 2
15
Byte 3
B5
Byte 4
84
Command
03 06
Byte 1,2
1C A4 2B A2
Byte 3,4
AA AB A6 BB
Byte 5,6
BD 2B 2C 63
Byte 7,8
A2 2D 3A D4
Table 11: Programming ALIS Ring Detect Coefficients 10.5.3 Ring Threshold in Sleep Mode Parameter Ring Threshold Table 12: Ring Threshold in Sleep Mode Symbol Limit Values min typ 12 max 18 Vrms Unit Reference
Semiconductor Group
82
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Characteristics 11 11.1 Electrical Characteristics Programmable Filters
A set of programmable filters is used to adapt the whole system to: * country standards * board designs (EMI capacitors etc.) * data pumps * telephone lines Note: All these coefficients will be computed by a coefficient program. Any change in these computed values may cause a loss of performance or instability. In detail, the following filters are programmable: * * * * * * Trans-hybrid balancing (TH) filter Trans-hybrid pre-balancing filter Impedance matching (IM) filter Frequency response receive (FRR) filter Frequency response transmit (FRX) filter Ringer impedance
Amplification/attenuation transmit (AX) filter Gain for AX filter range 3.. -14 dB: range -14 .. -24 dB: Gain for AGX range 3.5, 0 -2.5, -6 Amplification/attenuation receive (AR) filter Gain for AR filter range -3 .. 14 dB: range 14 .. 24 dB: Gain for AGR_R: range 0, 3.5, 6 dB Gain for AGR_Z: range -3.5, 0, 2.5, 6 dB 11.2 DC Characteristics step size 0.02 .. 0.05 dB step size 0.5 dB step size 0.02 .. 0.05 dB step size 0.5 dB
The filter coefficients are generated by a software tool including a high-level model of ALIS and additional user-defined or application-specific system components.
Semiconductor Group
83
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Characteristics 11.2.1 DC Termination
The DC termination is enabled in conversation mode and is disabled during ringing mode, puls dialing mode and sleep mode. The DC termination can be programmed according to the formula: for i < Imax ( u - Uo ) i ( u ) = -------------------R for i > Imax i ( u ) = Imax
Note: U0 is the sum of the U value listed in table 14 and the flow voltage of the diodes in the external bridge (typ. 2 x 0.4 V)
11.2.2 Programming Ranges for DC Termination Imax 50 mA 100 mA Table 13: Programming Range for Imax U (DCU) 0V 1.5 V 3.5 V 7.2 V Table 14: Programming Range for U R (DCR) 70 100 200 240 280 Table 15: Programming Range for R Note: For programming details, see "XR3 Extended Register 3 (DC Characteristic)" on page 47
Semiconductor Group 84 Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Characteristics 11.2.3 Input Current in Puls Dialing Mode
Uab = 30 V DC Parameter Input current at break Table 16: Input Current in Puls Dialing Mode 11.3 11.3.1 AC Termination Ringer Impedance Symbol Iin Limit Values min typ max 500 A Unit
Programming of the ringer impedance is supported by a software tool. The following table shows typical values. Uab = 70 Vrms Parameter Ringer impedance (20 Hz < f <60 Hz) Typical capacitors Ringer impedance in other modes2)
1) The frequency range can be changed 2) Ringer impedance is generated only in ring mode
1)
Symbol Rin Cin 5
Limit Values min typ 10 max 25 1
Unit k F
0.6
Table 17: Ringer Impedance
Semiconductor Group
85
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Characteristics 11.4 ALIS Caller ID Interface Parameter Capacitance Rin Rfb Symbol min Cin Rin Rfb Limit Values typ 50 50 200 max nF k k Unit
Table 18: ALIS Caller ID Interface 11.4.1 . Parameter Range of programs for ring-level detection Ring-level detection step size Range of programs for frequency detection Symbol Vring Vring Fring 20 30 Limit Values min typ max 100 10 60 V V Hz
10%
Ring Detect Levels and Frequencies
Unit
Tolerance
10%
10%
Table 19: Ring Detect Levels and Frequencies
11.5
ALIS Cap Interface Parameter Symbol min Cin 5 Limit Values typ 10 max 1000 5 10 2 4 pF % nH kV Unit
Capacitance Tolerance between CAP_x1 and CAP_x2 Inductance Isolation Table 20: ALIS Cap Interface
Semiconductor Group
86
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic 12 12.1 Electrical Performance Characteristic Absolute Maximum Ratings Parameter Digital supply voltage Analog supply voltage Analog input and output voltage Digital input voltages DC input and output current Storage temperature Ambient temperature under bias Max. power dissipation Symbol VDD VDDA Vin, Vout VDin Iin, Iout TST TA PDmax Ratings min -0.3 -0.3 -0.3 -0.3 -10 -60 -10 max 7.0 7.0 VDDA + 0.3 VDD + 0.3 10 125 80 1 V V V V mA C C W Unit
Note: Stresses above the absolute maximum ratings may cause permanent damage to the device. Extended operation at maximum levels may degrade performance and affect reliability.
Table 21: Absolute Maximum Ratings
Semiconductor Group
87
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic 12.2 Recommended Operating Conditions Parameter Digital supply voltage Analog supply voltage ALIS-A (programmed to 4.25 V) Analog supply voltage ALIS-D Ambient temperature under bias Operating frequency Clock duty cycle Signal rise and fall time tr, tf Symbol min VDD VDDA VDDA TA fclk 45 4.75 4.00 4.75 0 16.384 50 Conditions typ 5.0 4.25 5.0 5.25 70 20** 55 20 max 5.25 V V V C MHz % ns
Unit
Note: Extended operation outside the recommended limits may degrade performance and affect reliability. Note: **This value is guaranteed by design. Characterization and periodically samples will be applied to production devices at this test conditions.
Table 22: Recommended Operating Conditions 12.3 12.3.1 DC Characteristics ALIS-A
VDDA= 4.25V progr.; TA=0 - 70C Parameter Power-up time VDDA supply current1) Ringing mode2) IDDA1 Vring=60V DC + 90Vrms, fring=25 - 50Hz fclk=16.384MHz Vab=30 V DC 2.5 3 mA Symbol tPU Conditions Spec. Limits min typ max 100 ms Unit
Conversation mode3) Pulse dialing mode Digital interface
Semiconductor Group
IDDA2 IDDA3
7
10 500
mA A
88
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic Low-level input voltage High-level input voltage Low-level output voltage High-level output voltage Input current low Input current high Input resistance Sleep mode Conversation mode Pulse dialing mode Ring threshold Power supply rejection Rin Rin Rin note6) see 10.2.3 Inter-pulsing period (make) Ripple: 0-150kHz; 70mVrms 300Hz - 3.4kHz 3.4kHz - 150kHz 40 25 dB dB 200 15 M VRMS VIL4) VIH4) VOL5) VOH5) IIL IIH IOL=5mA IOH=-5mA VIL=GNDA VIH=VDDA 3.25 1 1 2.0 0.5 0.8 V V V V A A
VRThresh VDDA=4.25V ext. PSRR
either supply/direction either supply/direction
1) Will be taken from TIP/RING when the hook switch is open 2) In ringing mode the ringer impedance will be synthesized. Therefore a current according to this impedance will flow from TIP/RING. This current is taken out of the ring burst as an AC current. 3) In conversation mode the DC characteristic will be synthesized and a current according to this characteristic will flow from TIP/RING. 4) Digital Inputs: Test, SI_0, SI_1 5) Digital Outputs: SO_0, SO_1Q 6) Within this mode the hook switch must be open and the input resistance is infinite.
Table 23: DC Characteristics ALIS-A
Semiconductor Group
89
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic 12.3.2 ALIS-D
VDD = VDDA= 5V 5%; TA=0 - 70C Parameter Supply current Deep sleep mode Sleep mode Ringing mode Conversation mode Pulse dialing mode Low-level input voltage IDD0 IDD1 IDD2 IDD3 IDD4 VIL11) VIL22) VIL33) VIH11) VIH22) VIH33) VOL4) VOH4) IIL1,2) IIH1,2) IOZL5) IOZH5) IOL=5mA IOH=-5mA VIL=GND VIH=VDD VIL=GND VIH=VDD VDD0.5 1 1 1 1 2.0 3.5 3.5 0.5 fclk = 16.384 MHz Symbol Conditions VDD=5V, no loads <10 3.5 8.0 13 8.0 50 10 15 25 15 0.8 1.5 0.5 A mA mA mA mA V Spec. Limits min typ max Unit
High-level input voltage
V
Low-level output voltage High-level output voltage Input current low Input current high Tri-state current low Tri-state current high
V V A A A A
1) TTL Inputs: DCLK, CS, DIN, DAT_CLK, DAT_IN, MODE, FSC 2) CMOS Input: RESET 3) Clock Input: MCLK1 4) Outputs: DOUT, INT, DAT_OUT, FSC 5) Tristates, Bidirectionals: DOUT, FSC
Table 24: DC Characteristics ALIS-D
Semiconductor Group
90
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic 12.4 AC Transmission Characteristics
Unless otherwise stated, the transmission characteristics are guaranteed within the following test conditions: TA=0 C to 70 C VDD=5V 5% VDDA=4.25V (generated from ALIS-A) Line impedance ZL = 600 0.1% Ohms Termination impedance ZM = 600 Ohms digital: 0dBm0 = -3 dB FS analog: 0 dBm is equal to the voltage of 0.775 Vrms when loaded with 600 Ohms 0 dBm = 0dBm0 f=1004Hz. 2 VRMS metering at 12 or 16 kHZ VDDA programmed to 4,25 V: VTIP/RING>=6,8 V VDDA programmed to 4 V: VTIP/RING>=6,5 V 12.4.1 Absolute Gain Error
AGX=AGR=0 dB Parameter Absolute gain error receive TA=25 C; VDDA=4.25V TA=0-70 C; VDDA=4.25V Absolute gain error transmit TA=25 C; VDDA=4.25V TA=0-70 C; VDDA=4.25V AE_X -1 -1.2 0.5 0.7 +1 +1.2 dB dB Symbol AE_R -1 -1.2 0.5 0.7 +1 +1.2 dB dB -10 dBm0 Limit Values min typ max -10 dBm Unit Test condition
Semiconductor Group
91
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic Table 25: Absolute gain error 12.4.2 Gain Tracking
AGX=AGR=0dB Parameter Gain tracking receive Symbol GT_R Limit Values min typ max 0 to -10 dBm -30 to -40 dBm -40 to -50 0.dBm 0 to -10 dBm0 -10 to -40 dBm0 -40 to -50 dBm0 -0.15 0.01 0.15 -0.15 0.01 0.15 -0.3 Gain tracking transmit GT_X -0.5 -0.1 -0.5 Table 26: Gain Tracking 12.4.3 Harmonic Distortion plus Noise 0.07 0.3 0.05 0.5 0.07 0.1 0.3 0.5 Unit Test condition
-10 dBm0; ZL= 600 ; f=1004 Hz Parameter HDN receive HDN transmit HDN receive HDN transmit Symbol THDN_Rc THDN_Tc THDN_Rl THDN_Tl 74 74 72 72 Limit Values min typ 77 77 75 75 max dBFS dBFS dBFS dBFS linear-weighted1) C-weighted Unit Test condition
1) Linear weighted values are guaranteed by design, characterization, and periodically samples and testing production devices at this test conditions
Table 27: Harmonic Distortion plus Noise
Semiconductor Group
92
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic 12.4.4 Harmonic Distortion
-10 dBm0; ZL= 600 ; f=100 to 2000 Hz, 2nd and 3rd harmonic Parameter HD receive HD transmit HD of echo signals via TIP/RING Symbol HDN_R HDN_T HDN_El 80 80 80 Limit Values min typ max dB dB dB Unit Test condition
Table 28: Harmonic Distortion for Echo Signals
12.4.5
Return Loss
The return loss at a level of 0 dBm0 will be better than 16 dB in a 300-3600 Hz bandwidth using the following set of defined impedances 600 Ohms 220 Ohms + (820 Ohms in parallel with 115 nF) 120 Ohms + (820 Ohms in parallel with 110 nF) 370 Ohms + (620 Ohms in parallel with 310 nF)
Semiconductor Group
93
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic 12.4.6 Frequency Response
12.4.6.1 Receive Reference frequency 1kHz, input signal level 0dBm0
Figure 38 Frequency Response Receive
Semiconductor Group
94
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic 12.4.6.2 Transmit Reference frequency 1kHz, input signal level 0dBm0
Figure 39 Frequency Response Transmit
Semiconductor Group
95
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic 12.4.7 Group Delay
Maximum delays when ALIS is operating with H(TH)=H(IM)=0 and H(FRR)=H(FRX)=1 including the delay through A/D- and D/A converters. Specific filter programming may cause additional group delays. Group Delay deviations remain within the limits in the figures below. 12.4.7.1 Group Delay Absolute Values
Parameter Receive delay Transmit delay Table 29: Group Delay
Symbol DRA DXA
Limit Values min typ max 340 400
Unit s s
Reference Input signal level 0 dBm0
12.4.7.2 Group Delay Distortion Receive Input signal level 0dBm0
Figure 40 Group Delay Distortion Receive
Semiconductor Group
96
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic 12.4.7.3 Group Delay Distortion Transmit Input signal level 0dBm0 1))
Figure 41 Group Delay Distortion Transmit
1
R is switched on: reference point is at TGmin HPR is switched off: reference point is at 1.5 kHz
Semiconductor Group
97
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic 12.4.8 Out-of-Band Signals at TIP/RING Receive
When an 0dBm0 out-of-band sine-wave signal with a frequency of (<<100Hz or 3.4kHz to 100kHz) is applied to the analog input, the level of any resulting frequency component at the digital output will stay at least X dB below a 0dBm0, 1kHz sine wave reference signal at the analog input.1))
Figure 42 Out of Band Receive
1
Poles at 12 kHz 150 Hz and 16 kHz 150 Hz will be provided
Semiconductor Group
98
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic 12.4.9 Out-of-Band Signals at TIP/RING Transmit
When a 0 dBm0 sine wave with a frequency of (300Hz to 3.99kHz) is applied to the digital input, the level of any resulting out-of-band signal at the analog output will stay at least X dB below a 0 dBm0 1 kHz sine-wave reference signal at the analog output.
Figure 43 Out of Band Transmit
Semiconductor Group
99
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic 12.4.10 Trans-hybrid Loss The quality of trans-hybrid balancing is very sensitive to deviations in gain and group delay. These deviations are inherent in ALIS A/D and D/A converters as well as in all the external components used. Measurement of ALIS trans-hybrid loss: A 0dBm0 sine wave signal and a frequency in the range between 300 - 3400 Hz is applied to the digital input. The resulting analog output signal VOUT at TIP RING is received and canceled by the TH filter. The programmable filters FRR, AR, FRX, AX and IM and the balancing filter TH are enabled with optimized coefficients. The resulting echo measured at the digital output is at least X dB below the level of the digital input signal as shown in the table below. (Filter coefficients will be provided.)
Parameter Trans-hybrid loss at 300 Hz 500 Hz 2500 Hz 3000 Hz 3400 Hz
Symbol
Limit Values min typ 40 45 40 35 35 27 33 29 27 27
Unit
Test condition
THL 300 THL 500 THL2500 THL3000 THL3400
dB dB dB dB dB
TA=25 C; VDDA=4.25V;
Table 30: Trans-hybrid Loss The listed values for THL correspond to a typical variation of the signal amplitude and delay in the analog blocks. Amplitude Delay =typ. 0.8 dB =typ. 0.5 s
Semiconductor Group
100
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic 12.5 12.5.1 AC Timing Characteristics Input/ Output Waveform for AC Tests
2,8 0,4
2,4 0,8
Test Points
2,4 0,8
Device under Test
= 50pF max C Load
Figure 44 Waveform for AC Tests 12.5.2 Reset Timing
For resetting ALIS to its basic settings mode, negative pulses applied to the RESET pin have to be lower than 1.5 volts (CMOS Schmitt trigger input) and longer than 180 ns. Signals shorter than 40 ns are ignored. 12.5.3 Control Interface Timing
CS
t
s u (C S )
t
DCLK
c (D C L K )
t h d (C
S)
t
D IN DOUT
s u (D IN )
t
h d (D IN )
t
p d (D O U T )
t
p d (D O U T Z )
H IG H IM P .
Figure 45 Control Interface Timing
Semiconductor Group
101
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic VDD=VDDA= 5V 5%; TA= 0 - 70C Parameter Clock cycle time Clock duty cycle Setup time, CS before DCLK Hold time, CS after DCLK Setup time, DIN before DCLK Hold time, DIN after DCLK Delay time, DCLK, to DOUT Delay time, CS to DOUTZ
1) tclk=1/fclk
Symbol min tc(DCLK) tsu(CS) thd(CS) tsu(DIN) thd(DIN) tpd(DOUT) tpd(DOUTZ) 1/1024 45 50 2*tclk1) 120 60 120
Limit Values typ 50 max 1 55
Unit ms % ns ns ns ns 100 100 ns ns
Table 31: Control Interface Switching Characteristics 12.5.4 Data Interface Timing
t
FSC
t
w (F S C )
c (F S C )
t t
p d (F S C ) c (D A T _ C L K )
t id le ( F S
C)
DAT_CLK
t
D A T _ IN DAT OUT
s u (D A T _ IN )
t
h d (D A T _ IN )
t p d (D
AT_O UT)
Figure 46 Data Interface Timing
Semiconductor Group 102 Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic
VDD=VDDA= 5V 5%; TA=0 - 70C Parameter Data clock cycle time Data clock duty cycle Frame synch clock cycle time FSC pulse width (as input) FSC pulse width (as output) Setup time, DAT_IN before DAT_CLK Hold time, DAT_IN after DAT_CLK Delay time, DAT_CLK to DAT_OUT Idle time, DAT_CLK to FSC Delay time, DAT_CLK to FSC Setup time, FSC to DAT_CLK
1)
Symbol tc(DAT_CLK)
Limit Values min 1/ 1024 45 50 125 488 tclk*20 50 100 180 100 488 0 tclk+60 typ max 1/ 128 55
Unit ms % s ns s ns ns ns ns ns ns
tc(FSC) tw(FSC) tw(FSC) tsu(DAT_IN) thd(DAT_IN) tpd(DAT_OUT) tidle(FSC) tpd(FSC) tsu(FSC)
1) Guaranteed by design
Table 32: Data Interface Switching Characteristics
Semiconductor Group
103
Data Sheet 06.98
PSB 4595 / PSB 4596 Analog Line Interface Solution
Electrical Performance Characteristic 12.5.5 Package Outlines
P-SSOP28 (Plastic Shrink Small Outline Package)
P-TSSOP24 (Plastic Thin Shrink Small Outline Package)
Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".
SMD = Surface Mounted Device Semiconductor Group 104
Dimensions in mm
Data Sheet 06.98


▲Up To Search▲   

 
Price & Availability of PSB4595

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X